感性理解一下KMP

一些理解

关于模式串的跳转

  首先,对于模式串求出一个 next \text{next} next 数组, next i \text{next}_i nexti 表示模式串的前 i i i 个字符中真前缀和真后缀的最大相等的长度。

  然后我们在匹配的时候如果在 i i i 这个位置适配了(也就是 S i ≠ t i S_i \ne t_i Si=ti):

在这里插入图片描述

  那么我们就需要找到 next i \text{next}_i nexti,然后把模式串的 next i \text{next}_i nexti 的位置跳到 i i i 的位置上去(红色的这两部分是相同的):

在这里插入图片描述

  然后就又可以继续向下匹配了。

关于怎么求 next \text{next} next

  现在已经求出了前 i i i 个的 next \text{next} next

在这里插入图片描述

  如果 t [ n e x t [ i ] + 1 ] = t [ i + 1 ] t[next[i] + 1] = t[i + 1] t[next[i]+1]=t[i+1],那么继续往后扫,知道不相等为止就是 i + 1 i + 1 i+1 next \text{next} next

  如果不等,那么就继续跳前面 next i \text{next}_i nexti next \text{next} next,也就是这样:

在这里插入图片描述

  又因为红色部分是相同的,所以四个蓝色的部分都是相同的,然后就继续向后扩展,不能扩展之后就继续跳 next \text{next} next

代码

#include<bits/stdc++.h>
using namespace std;
#define MAXN 1001000

int n = 0, m = 0;
char s[MAXN], t[MAXN];
int f[MAXN] = { 0 };
int nxt[MAXN] = { 0 };

void kmp(){
	nxt[1] = 0;
	for(int i = 2, j = 0; i <= n; i++){
		while(j > 0 and t[j + 1] != t[i]) j = nxt[j];
		if(t[j + 1] == t[i]) j++;
		nxt[i] = j;
	}
	for(int i = 1, j = 0; i <= m; i++){
		while(j > 0 and t[j + 1] != s[i]) j = nxt[j];
		if(t[j + 1] == s[i]) j++;
		f[i] = j;
	}
}

int main(){
	cin >> (s + 1) >> (t + 1);
	n = strlen(t + 1), m = strlen(s + 1);
	kmp();
	for(int i = 1; i <= m; i++)
		if(f[i] == n) cout << i - n + 1 << '\n';
	for(int i = 1; i <= n; i++)
		cout << nxt[i] << ' '; puts("");
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值