TensorFlow2.x 学习笔记(三)基础操作

数据类型

python

Data Container

  • list :消耗大
  • np.array :无GPU
  • tf.tensor

TF is a computing lib

Creat

tf.constant(1)
# int
tf.constant(1.)
# float32
tf.constant(2.2, dtype=tf.int32)
# error
tf.constant(2., dtype=tf.double)
# float64
tf.constant([True, False])
# bool
tf.constant('hello,world.')
# string

Property

with tf.device("cpu"):
	a = tf.constant([1])
with tf.device("gpu"):
	a = tf.range(4)
a.device
b.device
aa = a.gpu()
aa.device

bb = b.cpu()
bb.device

b.numpy()
# return numpy array

b.ndim
tf.rank(b)
tf.rank(tf.ones([3,4,2])) 

b.name
#没啥用了

check Tensor Type

isinstace(a, tf.Tensor)
tf.is_tensor(b)
c.dtype

Convert

a = np.arange(5)
a.dtype
# int64

aa = tf.convert_to_tensor(a) # int64
aa = tf.convert_to_tensor(a, dtype=tf.int32) #int32

tf.cast(aa, dtype=tf.float32)
tf.cast(aa, dtype=tf.double)
tf.cast(aa, dtype=tf.int32)

tf.Variable

对于可优化的参数用Variable

a = tf.range(5)
b = tf.Variable(a)
b.dtype
b.name
b = tf.Variable(a, name='input_data')
b.name
b.trainable

isinstance(b, tf.Tensor)
isinstance(b, tf.Variable)
tf.is_tensor(b)

b.numpy()

a = tf.ones([])
int(a)
float(a)

创建Tensor

  • from numpy,list
  • zeros, ones
  • fill
  • random
  • constant
  • Application

From Numpy,List

tf.convert_to_tensor(np.ones([2,3]))
tf.convert_to_tensor(np.zeros([2,3]))
tf.convert_to_tensor([1, 2])
tf.convert_to_tensor([1, 2.])
tf.convert_to_tensor([[1], [2.]])

zeros,ones

# zeros
a = tf.zeros([2, 3, 3]) # input为shape
tf.zeros_like(a)
tf.zeros_like(a.shape)
# ones
tf.ones()
tf.ones_like()

Fill

tf.fill([2,3],0)
tf.fill([2,3],0)

Random

Normal

tf.random.normal([2,2],mean=1,stddev=1)
tf.random.normal([2,2])
tf.random.truncated_normal([2,2],mean=0,stddev=1)

Uniform

tf.random.uniform([2,2],minval=0, maxval=1)
tf.random.uniform([2,2],minval=0, maxval=100)

Random Permutation

idx = tf.range(10)
idx = tf.random.shuffle(idx)

a = tf.random.normal([10,784])
b = tf.random.uniform([10], maxval=10, dtype=tf.int32)

a = tf.gather(a,idx)
b = tf.gather(b.idx)

Application

Scalar

loss / accuracy

out = tf.random.uniform([4,10])

y = tf.range(4)
y = tf.one_hot(y, depth=10)

loss = tf.keras.losses.mse(y, out)

loss = tf.reduce_mean(loss)

Vector

Bias

net = layers.Dense(10)
net.build((4,8))
net.kernel
net.bias

Matrix

x = tf.random.normal([4,784])
net = layers.Dense(10)
net.build((4,784))

net(x).shape #[4,10]
net.kernel.shape # [784,10]

net.bias.shape [10]

Tensor

dim = 3

nlp : [b, seq_len, word_dim]

(X_train, y_train), (X_test, y_test) = keras.datasets.imdb.load_data(num_words=10000)
x_train = keras.preprocessing.sequence.pad_sequences(X_train, maxlen=80)
x_train.shape

emb = embedding(x_train)
emb.shape
out = rnn(emb[:4])
out.shape

dim = 4

  • Image :[b,h,w,3]
  • feature map :[b,h,w,c]
x = tf.random.normal((4,32,32,3))
net = layers.Conv2D(16, kernel_size=3)
net(x) 

dim = 5

  • Single task: [b, h, w, 3]
  • meta-learning: [task_b, b, h, w, 3]

索引与切片

Indexing

  • Basic indexing
    • [idx][idx][idx]
    a = tf.ones([1,5,5,3])
    a[0][0]
    a[0][0][0]
    a[0][0][0][2]
    
  • Numpy Style
    • [idx, idx, …]
    a = tf.random.normal([4, 28, 28, 3])
    a[1].shape
    a[1,2].shape
    a[1,2,3].shape
    a[1,2,3,2].shape
    
  • start:end
    [A,B)
    a = tf.range(10)
    a[-1:]
    a[-2:]
    a[:2]
    a[:-1]
    
  • Indexing by :
    a.shape
    a[0].shape
    a[0,:,:,:].shape
    a[:,:,:,0].shape
    
  • Indexing by ::
    • s t a r t : e n d : s t e p start:end:step start:end:step
    • : : s t e p ::step ::step
    a.shape
    a[0:2,:,:,:].shape
    a[:,0:28:2,0:28:2,:].shape
    a[:,:14,:14,:].shape
    a[:,14:,14:,:].shape
    a[:,::2,::2,:].shape
    
    • : : − 1 ::-1 ::1
    a = tf.range(4)
    a[::-1]
    a[::-2]
    a[2::-2]
    
  • a = tf.random.normal([2,4,28,28,3])
    a[0].shape
    a[0,:,:,:,:].shape
    a[0,...].shape
    a[:,:,:,:,0].shape
    a[...,0].shape
    a[0,...,2].shape
    
  • Selective Indexing
    • tf.gather
      # data: [classes, students, subjects]
      # [4,35,8]
      tf.gather(a, axis=0, indices=[2,3]).shape
      tf.gather(a, axis=0, indices=[2,1,3,0]).shape
      tf.gather(a, axis=1, indices=[2,3,7,9,16]).shape
      
    • tf.gather_nd
      • several students and several subjects
      aa = tf.gather(a,axis,[several students])
      aaa = tf.gather(aa,axis,[several subjects])
      
      • several (students and subjects)
      a.shape
      tf.gather_nd(a,[0]).shape
      tf.gather_nd(a, [0,1]).shape
      tf.gather_nd(a, [0,1,2]).shape
      tf.gather_nd(a, [[0,1,2]]).shape
      tf.gather_nd(a, [[0,0],[1,1]]).shape
      tf.gather_nd(a, [[0,0],[1,1],[2,2]]).shape
      tf.gather_nd(a, [[0,0,0],[1,1,1],[2,2,2]]).shape
      tf.gather_nd(a, [[[0,0,0],[1,1,1],[2,2,2]]]).shape
      
    • tf.boolean_mask
      # [4, 28, 28, 3]
      a.shape
      tf.boolean_mask(a, mask=[True,True,False,False]).shape
      tf.boolean_mask(a, mask=[True,True,False],axis=3).shape
      a = tf.ones([2,3,4])
      tf.boolean_mask(a, mask=[[True,False,False],[True,True,False]]).shape
      

维度变换

  • shape,ndim

    • [b, h, w, c]
  • reshape

    a = tf.random.normal([4,28,28,3])
    a.shape, a.ndim
    tf.reshape(a, [4, 784, 3]).shape
    tf.reshape(a, [4, -1, 3]).shape
    tf.reshape(a, [4, 784*3]).shape
    tf.reshape(a, [4, -1]).shape
    aa = tf.reshape(a, [4, -1])
    tf.reshape(aa, [4, 28, 28, 3]).shape
    tf.reshape(aa, [4, 14, 56, 3]).shape
    tf.reshape(aa, [4, 1, 784, 3]).shape
    
  • expand_dims

    a = tf.random.normal([4,35,8])
    tf.expand_dims(a, axis=0).shape
    tf.expand_dims(a, axis=3).shape
    tf.expand_dims(a, axis=-1).shape
    tf.expand_dims(a, axis=-4).shape
    
  • Squeeze dim

    tf.squeeze(tf.zeros([1,2,1,1,3])).shape
    a = tf.zeros([1,2,1,3])
    tf.squeeze(a,axis=0).shape
    tf.squeeze(a,axis=2).shape
    tf.squeeze(a,axis=-2).shape
    tf.squeeze(a,axis=-4).shape
    
  • transpose

    a = tf.random.normal((4,3,2,1))
    a.shape
    tf.transpose(a).shape
    tf.transpose(1, perm=[0,1,3,2]).shape
    # transpose to pytorch
    # [b,w,h,c] to [b,3,h,w]
    tf.transpose(a,[0,3,1,2]).shape
    

Broadcasting

  • expand
    • insert 1 dim ahead if needed
    • expand dims with size 1 to same size
    • [4,32,32,3]
    • [3] - [1,1,1,3] -[4,32,32,3]
  • without copying data
  • tf.broadcast_to
    x = tf.random.normal([4,32,32,3])
    x.shape
    x +tf.random.normal([32,32,1]).shape
    x +tf.random.normal([1,4,1,1]).shape
    b = tf.broadcast_to(tf.random.normal([4,1,1,1]), [4,32,32,3])
    b.shape
    
  • Broadcast VS Tile
    # 内存占用不一样
    a = tf.ones([3,4])
    a1 = tf.broadcast_to(a, [2,3,4])
    
    a2 = tf.expand_dims(a, axis=0)
    a2 = tf.tile(a2, [2,1,1])
    

数学运算

  • element-wise

    • +-*/%//
    • tf.math.log/tf.exp
    • tf.pow/tf.sqrt
  • matrix-wise

    • @ matmul
    • with broadcasting
      a = tf.ones([4,2,3])
      b = tf.fill([4,3,5],2.)
      a@b
      tf.matmul(a,b)
      b = tf.fill([3,5],2.)
      bb = tf.broadcast_to(b, [4,3,5])
      a@bb
      
  • axis-wise

前向传播(张量)

  • o u t = r e l u { r e l u { r e l u [ X @ W 1 + b 1 ] @ W 2 + b 2 } @ W 3 + b 3 } out = relu\{relu\{relu[X@W_1+b_1]@W_2 + b_2\}@W_3+b_3\} out=relu{relu{relu[X@W1+b1]@W2+b2}@W3+b3}
  • p r e d = a r g m a x ( o u t ) pred = argmax(out) pred=argmax(out)
  • l o s s = M S E ( o u t , l a b e l ) loss = MSE(out,label) loss=MSE(out,label)
  • m i n i m i z e   l o s s minimize\ loss minimize loss
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值