模型灵敏性分析总结

建模过程会对问题做一些假设,需要考虑所得结果对每一条假设的敏感程度以及各个参数的敏感程度。

灵敏性分析常常是根据对数据提出的假设做分析,将灵敏性数据表示成相对改变量或者百分比改变的形式,要比表示成绝对改变量的形式更自然也更适用。

一个模型称为稳健的,是指即使这个模型不完全精确,由其导出的结果也是正确的。稳健性分析常常是针对模型的某些理想化假设做分析。

寻找限制性因素(瓶颈)或者寻找最急切需要改变的量都可以用灵敏性分析

注意所有的分析最好都结合实际说明为什么可能出现这种情况,并且说明对应现实中的结果将如何改变。如果没有这些意义也可以,不过就仅仅是对模型本身进行分析了。

决策型模型

  1. 由于风险因素的存在,有必要研究几种可供选择的方案。
  2. 决策改变的临界点。
  3. 各参数的改变对决策时选择的各种值有什么影响。
  4. 将假设的定值定为变量。

优化型模型

  1. 线性关系一般都是由假设得来,如果采取非线性函数(改变函数形式),则线性化的模型在多少范围内是有效的。
  2. 对于线性优化,可以改变限制的资源量的改变求得其影子价格,提出在何种情况下应当引入更多的资源。(只用分析关键约束的影子价格,或者影子价格为0得出其为非限制性因素)
  3. 线性规划还可以求得优化点改变的临界条件,以及限制因素改变的临界条件。
  4. 各参数的改变对结果有什么影响。

动态模型

  1. 各参数的改变对结果有什么影响。
  2. 动力学
    探究初始状态的改变使结果发生改变的临界点
    探究平衡态附近的变化规律、是否稳定(画图来看、用向量场/相图描述)
    稳定性探究可以用某个方程(详细见《数学建模方法于分析》P105)
    还可以探究一下什么时候出现混沌现象,即探究其收敛域(混沌动力系统对初始条件有着异常的灵敏性P149)
    除了內源因素,还要考虑外源因素,对动力系统分析会造成什么影响,最好能找到现实中存在的事件,说明这种事情发生的可能性
  3. 对于用数值方法求解微分方程组,不论用哪一种数值方法,一定要通过对控制精度的参数进行灵敏度分析来检验结果

概率模型

  1. 对独立性假设做稳健性分析。(一般都会假设变量独立,因为通过中心极限定理假设为正态分布时,独立性是前提)。可以假设为后一个增加量的数量受到当时拥挤程度的影响,可以参考马尔科夫链的无后效性思想,引入一个矩阵描述下一刻增量与当前拥挤程度的关系
  2. 各参数的改变对结果有什么影响。

线性回归/时间序列

  1. 各参数改变对结果有什么影响。
  2. 如果少了一个变量,R方和残差有什么影响(一般是残差变大,R方变小,R方代表携带的信息量)
  3. 残差图,对残差趋势进行分析,说明回归/拟合的合理性。
  4. 去掉残差较大的一些点,检测稳定性。
  5. 时间序列与之类似,不过可以计算残差的自相关函数,检验残差是否是白噪声序列来检验函数是否包含所有的时间序列相关性。
  6. 时间序列增加更多的预测因子,检验是否会产生较大的变化。
  7. 线性回归做齐方差/异方差检验
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页