强化学习笔记01:马尔科夫决策过程与动态规划

本文介绍了强化学习中的马尔科夫决策过程(MDP)和动态规划(DP)的基础知识,包括MDP的构成元素、贝尔曼方程、最优策略和值函数的关系,以及策略迭代和值迭代等DP算法。通过Gridworld示例展示了DP算法的应用。
摘要由CSDN通过智能技术生成

Markov Decision Process and Dynamic Programming

  • Date: Match 2019
  • Material from Reinforcement Learning:An Introduction,2nd,Rechard.S.Sutton;
  • Code from dennyBritze, 部分做了修改;


Abstract

MDP过程是RL环境中常见的范式,DP是解决有限MDP问题的可最优收敛办法,效率在有效平方级。DP算法基本思想是基于贝尔曼方程进行Bootstrapping,即用估计来学习估计(learn a guess from a guess)。DP需要经过反复的策略评估策略提升过程,最终收敛到最优的策略和值函数。这一过程其实是RL很多算法的基本过程,即先进行评估策略(Prediction)再优化策略。

MDP problems set up

RL problems set up中我们知道RL基本要素是Agent和Enviornment, 环境的种类很多,但大多都可以抽象成一个马尔科夫决策过程(MDP)或者部分马尔科夫决策过程(POMDP);

MDPs are a mathematically idealized form of the reinforcement learning problem for which precise
theoretical statements can be made.

Key elements of MDP: &lt; S , A , P , R , γ &gt; &lt;\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R},\gamma&gt; <S,A,P,R,γ>

名称 表达式
状态转移矩阵(一个Markov Matrix) $P_{ss’}^a=P(S_{t+1}=s’
奖励函数 $R_{s}^a=\mathbb{E}{\pi}[R{t+1}
累计奖励 G t = ∑ k = 0 ∞ γ k R t + 1 + k G_t=\sum_{k=0}^\infty\gamma^k R_{t+1+k} Gt=k=0γkRt+1+k
值函数(Value Function) $V_\pi(a)=\mathbb{E}[G_t
动作值函数(Action Value Fucntion) $Q_\pi(s,a)=\mathbb{E}[G_t
策略(Policy) $\pi(a
奖励转移方程 R t + 1 = R t + 1 ( S t , A t , S t + 1 ) R_{t+1}=R_{t+1}(S_t,A_t,S_{t+1}) Rt+1=Rt+1(St,At,St+1)
某策略下的状态转移方程 $P_{ss’}^\pi=\mathbb{P}(S_{t+1}=s’
某状态某策略下的奖励函数 $R_{s}^\pi=\sum_{a}\pi(a

Bellman Equation

贝尔曼方程将某时刻的值函数与其下一时刻的值函数联系起来:
G t = R t + 1 + γ R t + 2 + γ 2 R t + 3 + . . . G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... Gt=Rt+1+γRt+2+γ2Rt+3+...
G t = ∑ k = t + 1 T γ k − t − 1 R k = R t + 1 + γ G t + 1 G_t = \sum_{k=t+1}^{T}\gamma^{k-t-1}R_k = R_{t+1} + \gamma G_{t+1}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值