-
中文名
- 马尔可夫决策过程 外文名
- Markov Decision Processes 简 称
- MDP
-
属 于
- 运筹学中数学规划的一个分支 领 域
- 概率论,统计学 人 物
- 安德雷·马尔可夫
目录
简介
编辑
在
概率论和
统计学中,
马可夫决策过程(英语:Markov Decision Processes,缩写为 MDPs)提供了一个数学架构模型,用于面对部分随机,部分可由决策者控制的状态下,如何进行决策,以俄罗斯数学家
安德雷·马尔可夫的名字命名。在经由
动态规划与
强化学习以解决最佳化问题的研究领域中,马可夫决策过程是一个有用的工具。
马尔可夫过程在概率论和统计学方面皆有影响。一个通过不相关的自变量定义的随机过程,并(从数学上)体现出马尔可夫性质,以具有此性质为依据可推断出任何
马尔可夫过程。实际应用中更为重要的是,使用具有马尔可夫性质这个假设来建立模型。在建模领域,具有马尔可夫性质的假设是向随机过程模型中引入统计相关性的同时,当分支增多时,允许相关性下降的少有几种简单的方式。
马尔可夫
决策过程是指决策者周期地或连续地观察具有马尔可夫性的随机动态系统,序贯地作出决策。即根据每个时刻观察到的状态,从可用的行动集合中选用一个行动作出决策,系统下一步(未来)的状态是随机的,并且其状态
转移概率具有马尔可夫性。决策者根据新观察到的状态,再作新的决策,依此反复地进行。马尔可夫性是指一个随机过程未来发展的概率规律与观察之前的历史无关的性质。马尔可夫性又可简单叙述为状态转移概率的无后效性。状态转移概率具有马尔可夫性的随机过程即为
马尔可夫过程。马尔可夫决策过程又可看作随机对策的特殊情形,在这种随机对策中对策的一方是无意志的。马尔可夫决策过程还可作为马尔可夫型随机
最优控制,其
决策变量就是
控制变量。
发展概况
编辑
50年代R.贝尔曼研究
动态规划时和L.S.沙普利研究随机对策时已出现
马尔可夫决策过程的基本思想。R.A.霍华德(1960)和D.布莱克韦尔(1962)等人的研究工作奠定了马尔可夫决策过程的理论基础。1965年,布莱克韦尔关于一般
状态空间的研究和E.B.丁金关于非时齐(非时间平稳性)的研究,推动了这一理论的发展。1960年以来,马尔可夫决策过程理论得到迅速发展,应用领域不断扩大。凡是以马尔可夫过程作为数学模型的问题,只要能引入决策和效用结构,均可应用这种理论。
定义
编辑
马尔可夫决策过程是一个五元组
,其中

1)
是一组有限的状态;

2)
是一组有限的行为(或者,
是从状态可用的有限的一组行动
);



3)
是行动的概率
在状态
在时间
会导致状态
在时间
;






4)
是从国家转型后得到的直接奖励(或期望的直接奖励);

(注:马尔可夫决策过程的理论并没有说明这一点,
或
是有限的,但是下面的基本算法假设它们是有限的)。


图1表示具有三个状态(绿色圆圈)和两个动作(橙色圆圈)的简单MDP的示例。
描述
编辑
由于马尔可夫属性,这个特定问题的最优策略确实可以写成一个函数
只有,如上所述。

分类
编辑1.连续时间马尔可夫决策过程
对于连续时间的马尔可夫决策过程,可以在决策者选择的任何时候作出决定。与离散时间马尔可夫决策过程相比,连续时间马尔可夫决策过程可以更好地模拟连续动态系统的决策过程,即系统动力学由
偏微分方程定义。
2.离散时间马尔科夫决策过程
在离散时间马尔科夫决策过程中,决策是在离散的时间间隔进行的。
策略指标
编辑
策略是提供给决策者在各个时刻选取行动的规则,记作
,其中
是时刻n选取行动的规则。从理论上来说,为了在大范围寻求
最优策略
,最好根据时刻
以前的历史,甚至是随机地选择最优策略。但为了便于应用,常采用既不依赖于历史、又不依赖于时间的策略,甚至可以采用确定性平稳策略。




衡量策略优劣的常用指标有折扣指标和平均指标。折扣指标是指长期折扣〔把
时刻的单位收益折合成0时刻的单位收益的
(β < 1)倍〕期望总报酬;平均指标是指单位时间的平均期望报酬。


采用折扣指标的马尔可夫决策过程称为
折扣模型。业已证明:若一个策略是
折扣最优的,则初始时刻的决策规则所构成的平稳策略对同一
也是折扣最优的,而且它还可以分解为若干个确定性平稳策略,它们对同一β都是最优的,已有计算这种策略的算法。


采用
平均指标的马尔可夫决策过程称为
平均模型。已证明:当状态空间
和行动集
均为有限集时,对于平均指标存在最优的确定性平稳策略;当
和
不是有限的情况,必须增加条件,才有最优的确定性平稳策略。计算这种策略的算法也已研制出来。




扩展
编辑1.约束马尔可夫决策过程
约束马尔可夫决策过程(CMDPs)是马尔可夫决策过程(MDPs)的扩展。MDP和CMDP有三个基本的区别。
1)应用时一个动作而不是一个动作需要多个成本;
2)CMDP只能通过线性程序来解决,
动态编程不起作用;
3)最终的政策取决于开始的状态。
CMDP有很多应用。它最近被用在机器人的
运动规划场景中。