nkoj 1412
Description
由于外国间谍的大量渗入,国家安全正处于高度的危机之中。如果A间谍手中掌握着关于B间谍的犯罪证据,则称A可以揭发B。有些间谍收受贿赂,只要给他们一定数量的美元,他们就愿意交出手中掌握的全部情报。所以,如果我们能够收买一些间谍的话,我们就可能控制间谍网中的每一分子。因为一旦我们逮捕了一个间谍,他手中掌握的情报都将归我们所有,这样就有可能逮捕新的间谍,掌握新的情报。
我们的反间谍机关提供了一份资料,色括所有已知的受贿的间谍,以及他们愿意收受的具体数额。同时我们还知道哪些间谍手中具体掌握了哪些间谍的资料。假设总共有n个间谍(n不超过3000),每个间谍分别用1到3000的整数来标识。
请根据这份资料,判断我们是否有可能控制全部的间谍,如果可以,求出我们所需要支付的最少资金。否则,输出不能被控制的一个间谍。
Input
第一行只有一个整数n。
第二行是整数p。表示愿意被收买的人数,1≤p≤n。
接下来的p行,每行有两个整数,
第一个数是一个愿意被收买的间谍的编号,
第二个数表示他将会被收买的数额。这个数额不超过20000。
紧跟着一行只有一个整数r,1≤r≤8000。然后r行,
每行两个正整数,表示数对(A, B),A间谍掌握B间谍的证据。
Output
如果可以控制所有间谍,第一行输出YES,
并在第二行输出所需要支付的贿金最小值。否则输出NO,并在第二行输出不能控制的间谍中,编号最小的间谍编号。
Sample Input
样例输入1:
3
2
1 10
2 100
2
1 3
2 3
样例输入2:
4
2
1 100
4 200
2
1 2
3 4
Sample Output
样例输出1:
YES
110
样例输出2:
NO
3
分析:
先用tarjan算法求有向图的强连通分量,有诸多细节需要注意。
cost [i]记的是第i个强连通分量中最低的价格。
in[i]表示第i个强连通分量是否有入度。
如果存在入度为零且无法被收买,则无解,找出无法贿赂的最小编号即可。
如果有解,那么答案就是入度为零的scc cost[i]的和。
代码如下:
#include<cstdio> #include<cstring> #include<stack> #define FOR(i,s) for(int i=last[s] ; i ;i=next[i] ) //遍历起点为S的边 using namespace std; const int maxn=4000,maxe=9000,inf=100000000; int price[maxn],cost[maxn]; bool vis[maxn],in[maxn]; //vis[i]表示i号点 是否在栈中 struct tarjan{ int to[maxe],last[maxn],next[maxe]; int id[maxn],dfn[maxn],low[maxn]; int n,m,scc_cnt,clock; stack < int > s; void init(int n){ this->n=n; m=0; memset(to,0,sizeof(to)); memset(last,0,sizeof(last)); memset(next,0,sizeof(next)); } void add_edge(int x,int y){ to[++m]=y; next[m]=last[x]; last[x]=m; } void dfs(int u){ int v; dfn[u]=low[u]= ++clock; s.push(u); vis[u]=true; FOR(i,u) if(!dfn[to[i]]){ dfs(to[i]);low[u]=min(low[u],low[to[i]]); } else if(vis[to[i]]) //注意判断是否在栈中 low[u]=min(low[u],dfn[to[i]]); if(dfn[u]==low[u]){ scc_cnt++; do{ v=s.top();s.pop();id[v]=scc_cnt; vis[v]=false; }while(v!=u); } } void solve(){ int i; clock=scc_cnt=0; memset(id,0,sizeof(id)); memset(dfn,0,sizeof(dfn)); memset(low,0,sizeof(low)); for(i=1;i<=n;i++) if(!dfn[i]) dfs(i); for(i=1;i<=n;i++) FOR(j,i) //统计入度,注意判断i,to[j]是否在同一个scc中 if(id[i]!=id[to[j]])in[id[to[j]]]=true; } void answer(){ int i,ans=0,ok=1; for(i=1;i<=scc_cnt;i++)cost[i]=inf; for(i=1;i<=n;i++) //求cost[i] if(price[i]) cost[id[i]]=min(cost[id[i]],price[i]); for(i=1;i<=scc_cnt;i++) if(cost[i]>=inf&&!in[i]){ ok=0;break; } else if(!in[i]) ans+=cost[i]; if(!ok){ ans=2e9; for(i=1;i<=n;i++) if(cost[id[i]]>=inf&&!in[id[i]]) ans=min(ans,i); } printf("%s\n",ok?"YES":"NO"); printf("%d",ans); } }; int main(){ int n,i,j,p,r,x,w,y; tarjan solver; scanf("%d%d",&n,&p); solver.init(n); for(i=1;i<=p;i++){ scanf("%d%d",&x,&w); price[x]=w; } scanf("%d",&r); for(i=1;i<=r;i++){ scanf("%d%d",&x,&y); solver.add_edge(x,y); } solver.solve(); solver.answer(); }