强连通分量 间谍网络

nkoj 1412

Description

由于外国间谍的大量渗入,国家安全正处于高度的危机之中。如果A间谍手中掌握着关于B间谍的犯罪证据,则称A可以揭发B。有些间谍收受贿赂,只要给他们一定数量的美元,他们就愿意交出手中掌握的全部情报。所以,如果我们能够收买一些间谍的话,我们就可能控制间谍网中的每一分子。因为一旦我们逮捕了一个间谍,他手中掌握的情报都将归我们所有,这样就有可能逮捕新的间谍,掌握新的情报。 

我们的反间谍机关提供了一份资料,色括所有已知的受贿的间谍,以及他们愿意收受的具体数额。同时我们还知道哪些间谍手中具体掌握了哪些间谍的资料。假设总共有n个间谍(n不超过3000),每个间谍分别用1到3000的整数来标识。 

请根据这份资料,判断我们是否有可能控制全部的间谍,如果可以,求出我们所需要支付的最少资金。否则,输出不能被控制的一个间谍。

Input

第一行只有一个整数n。 

第二行是整数p。表示愿意被收买的人数,1≤p≤n。 

接下来的p行,每行有两个整数, 
第一个数是一个愿意被收买的间谍的编号, 
第二个数表示他将会被收买的数额。这个数额不超过20000。 

紧跟着一行只有一个整数r,1≤r≤8000。然后r行, 
每行两个正整数,表示数对(A, B),A间谍掌握B间谍的证据。

Output

如果可以控制所有间谍,第一行输出YES, 

并在第二行输出所需要支付的贿金最小值。否则输出NO,并在第二行输出不能控制的间谍中,编号最小的间谍编号。

Sample Input

样例输入1:
3
2
1 10
2 100
2
1 3
2 3

样例输入2:
4
2
1 100
4 200
2
1 2
3 4

Sample Output

样例输出1:
YES
110

样例输出2:
NO
3
分析:
先用tarjan算法求有向图的强连通分量,有诸多细节需要注意。
cost [i]记的是第i个强连通分量中最低的价格。
in[i]表示第i个强连通分量是否有入度。
如果存在入度为零且无法被收买,则无解,找出无法贿赂的最小编号即可。
如果有解,那么答案就是入度为零的scc cost[i]的和。
代码如下:
#include<cstdio>  
#include<cstring>  
#include<stack>  
#define FOR(i,s) for(int i=last[s] ; i ;i=next[i] )
//遍历起点为S的边 
using namespace std;  
const int maxn=4000,maxe=9000,inf=100000000;
int price[maxn],cost[maxn];
bool vis[maxn],in[maxn];  //vis[i]表示i号点 是否在栈中 
struct tarjan{
	int to[maxe],last[maxn],next[maxe];
	int id[maxn],dfn[maxn],low[maxn];
	int n,m,scc_cnt,clock;
	stack < int > s;
	void init(int n){
		this->n=n; m=0;
		memset(to,0,sizeof(to));
		memset(last,0,sizeof(last));
		memset(next,0,sizeof(next));
	}
	void add_edge(int x,int y){
		to[++m]=y;
		next[m]=last[x];
		last[x]=m;
	}
	void dfs(int u){
		int v;
		dfn[u]=low[u]= ++clock;
		s.push(u); vis[u]=true;
		FOR(i,u)
			if(!dfn[to[i]]){
				dfs(to[i]);low[u]=min(low[u],low[to[i]]);
			}
			else if(vis[to[i]])	//注意判断是否在栈中 
				low[u]=min(low[u],dfn[to[i]]);
		if(dfn[u]==low[u]){
			scc_cnt++;
			do{
				v=s.top();s.pop();id[v]=scc_cnt;
				vis[v]=false;
			}while(v!=u);
		}
	}
	void solve(){
		int i;
		clock=scc_cnt=0;
		memset(id,0,sizeof(id));
		memset(dfn,0,sizeof(dfn));
		memset(low,0,sizeof(low));
		for(i=1;i<=n;i++) if(!dfn[i]) dfs(i);
		for(i=1;i<=n;i++)
			FOR(j,i)  //统计入度,注意判断i,to[j]是否在同一个scc中 
				if(id[i]!=id[to[j]])in[id[to[j]]]=true;
	}
	void answer(){
		int i,ans=0,ok=1;
		for(i=1;i<=scc_cnt;i++)cost[i]=inf;
		for(i=1;i<=n;i++) //求cost[i] 
			if(price[i])
				cost[id[i]]=min(cost[id[i]],price[i]);
		for(i=1;i<=scc_cnt;i++)
			if(cost[i]>=inf&&!in[i]){
				ok=0;break;
			}
			else if(!in[i]) ans+=cost[i];
		if(!ok){
			ans=2e9;
			for(i=1;i<=n;i++)
				if(cost[id[i]]>=inf&&!in[id[i]])
					ans=min(ans,i);
		}
		printf("%s\n",ok?"YES":"NO");
		printf("%d",ans);
	}
};     
int main(){  
    int n,i,j,p,r,x,w,y;  
    tarjan solver;  
    scanf("%d%d",&n,&p);
    solver.init(n);
    for(i=1;i<=p;i++){
    	scanf("%d%d",&x,&w);
    	price[x]=w;
    }
    scanf("%d",&r);
    for(i=1;i<=r;i++){
    	scanf("%d%d",&x,&y);
    	solver.add_edge(x,y);
    }
    solver.solve();
    solver.answer();
}  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值