深度学习-Inception和Xception网络结构详解

本文介绍了Inception网络的核心思想,包括多尺寸卷积核、Pointwise Convolution、卷积核替换及Bottleneck结构。进一步讨论了Xception网络中的Depthwise Separable Convolution,该结构通过分离卷积显著减少了参数量,加速了训练过程。这些创新设计提高了神经网络的效率和性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Inception 是神经网络结构的一大神作,其提出的「多尺寸卷积」和「多个小卷积核替代大卷积核」等概念是现如今许多优秀网络架构的基石。也正是如此,基于此的 Xception 横空出世,作者称其为 Extreme Inception,提出的 Depthwise Separable Conv 也是让人眼前一亮。

本文不详细讲解论文内容,只探讨提出的这几个基础概念和结构,并按照时间顺序来探讨。首先探讨的是 Inception 的 多尺寸卷积核 和 卷积核替换,然后到 Bottleneck,最后到 Xception 的 Depthwise Separable Conv 。

多尺寸卷积核
Inception 最初提出的版本,其核心思想就是使用多尺寸卷积核去观察输入数据。

举个例子,我们看某个景象由于远近不同,同一个物体的大小也会有所不同,那么不同尺度的卷积核观察的特征就会有这样的效果。于是就有了如下的网络结构图:
在这里插入图片描述
Naive Inception V1
于是我们的网络就变胖了,增加了网络的宽度,同时也提高了对于不同尺度的适应程度。

Pointwise Conv
但是我们的网络变胖了的同时,计算量也变大了,所以我们就要想办法减少参数量来减少计算量,于是在 Inception v1 中的最终版本加上了 1x1 卷积核。
在这里插入图片描述
Inception V1
使用 1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值