AVL、B-TREE、B+TREE及算法可视化网站

二分查找

在这里插入图片描述

平衡二叉树

在这里插入图片描述
缺点:
树的高度较大
需要找出>5的数需要遍历树,效率低

btree/b-tree

在这里插入图片描述

减少树的高度(每一个节点都存储在磁盘中,每次对比后找下一个节点是一次磁盘寻址。树的深度大,磁盘寻址就要多次。)
缺点:
范围查找:需要找出>5的数需要遍历树,效率低

一颗M阶B树, 满足以下条件:(M 是一个节点最大能有M颗子树)
1.每个结点至多拥有M颗子树
2.根结点至少拥有两颗子树
3.除了根结点以外,其余每个分支结点至少拥有M/2颗子树
4.所有的叶结点都在同一层上
5.有k颗子树的分支结点,则存在k-1个关键字,关键字按照递增顺序进行排序;(代码中一般不会要求递增)
6.关键字数量满足ceil(M/2)-1<=n<=M-1

#define DEGREE		3
typedef int KEY_VALUE;

typedef struct _btree_node {
	KEY_VALUE *keys;//一维数组
	struct _btree_node **childrens;//二维数组
	int num;//当前节点存储的数据
	int leaf;//是否为叶子节点,是为1,否为0
} btree_node;

typedef struct _btree {
	btree_node *root;
	int t;
} btree;

btree_node *btree_create_node(int t, int leaf) {

	btree_node *node = (btree_node*)calloc(1, sizeof(btree_node));//自带清零(malloc没有),防止内存不够
	if (node == NULL) assert(0);

	node->leaf = leaf;
	node->keys = (KEY_VALUE*)calloc(1, (2*t-1)*sizeof(KEY_VALUE));
	node->childrens = (btree_node**)calloc(1, (2*t) * sizeof(btree_node*));
	node->num = 0;

	return node;
}
void btree_destroy_node(btree_node *node) {

	assert(node);

	free(node->childrens);
	free(node->keys);
	free(node);
	
}

btree的添加

(M一般为偶数,k=m-1就为奇数,可以将最中间的节点作为key)
在这里插入图片描述
先分裂,再添加。
在这里插入图片描述
在这里插入图片描述

分裂代码:

在这里插入图片描述
在这里插入图片描述


void btree_split_child(btree *T, btree_node *x, int i) {
	int t = T->t;

	btree_node *y = x->childrens[i];
	btree_node *z = btree_create_node(t, y->leaf);//新建一个z,把后面的几个节点放入到z中

	z->num = t - 1;

	int j = 0;
	for (j = 0;j < t-1;j ++) {
		z->keys[j] = y->keys[j+t];//新建一个z,把后面的几个节点放入到z中
	}
	if (y->leaf == 0) {//不是叶子节点,是内节点
		for (j = 0;j < t;j ++) {
			z->childrens[j] = y->childrens[j+t];
		}
	}
	
	//把x提上去,x的子树进行更新
	y->num = t - 1;
	for (j = x->num;j >= i+1;j --) {
		x->childrens[j+1] = x->childrens[j];
	}

	x->childrens[i+1] = z;

	for (j = x->num-1;j >= i;j --) {
		x->keys[j+1] = x->keys[j];
	}
	x->keys[i] = y->keys[t-1];
	x->num += 1;
	
}

在这里插入图片描述

//节点为根节点,而且根节点已经满了,做一个空节点在根节点上方在进行分裂
void btree_insert(btree *T, KEY_VALUE key) {
	//int t = T->t;

	btree_node *r = T->root;
	if (r->num == 2 * T->t - 1) {
		
		btree_node *node = btree_create_node(T->t, 0);
		T->root = node;

		node->childrens[0] = r;

		btree_split_child(T, node, 0);

		int i = 0;
		if (node->keys[0] < key) i++;
		btree_insert_nonfull(T, node->childrens[i], key);
		
	} else {
		btree_insert_nonfull(T, r, key);
	}
}

btree的删除:

先借位或者合并,然后再删除;
向右借位
FI的key数量2,是M/2-1的时候就需要借位。
在这里插入图片描述
借位借不到的时候就进行合并。
在这里插入图片描述

合并代码:

在这里插入图片描述

//{child[idx], key[idx], child[idx+1]} 
void btree_merge(btree *T, btree_node *node, int idx) {

	btree_node *left = node->childrens[idx];
	btree_node *right = node->childrens[idx+1];

	int i = 0;

	/data merge
	left->keys[T->t-1] = node->keys[idx];//把c拷贝到B后面
	for (i = 0;i < T->t-1;i ++) {
		left->keys[T->t+i] = right->keys[i];
	}
	if (!left->leaf) {
		for (i = 0;i < T->t;i ++) {
			left->childrens[T->t+i] = right->childrens[i];
		}
	}
	left->num += T->t;

	//destroy right
	btree_destroy_node(right);

	//node: C没有了FI要前移
	for (i = idx+1;i < node->num;i ++) {
		node->keys[i-1] = node->keys[i];
		node->childrens[i] = node->childrens[i+1];
	}
	node->childrens[i+1] = NULL;
	node->num -= 1;

	if (node->num == 0) {
		T->root = left;
		btree_destroy_node(node);
	}
}

完整代码:



#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <assert.h>

#define DEGREE		3
typedef int KEY_VALUE;

typedef struct _btree_node {
	KEY_VALUE *keys;
	struct _btree_node **childrens;
	int num;
	int leaf;
} btree_node;

typedef struct _btree {
	btree_node *root;
	int t;
} btree;

btree_node *btree_create_node(int t, int leaf) {

	btree_node *node = (btree_node*)calloc(1, sizeof(btree_node));//自带清零,防止内存不够
	if (node == NULL) assert(0);

	node->leaf = leaf;
	node->keys = (KEY_VALUE*)calloc(1, (2*t-1)*sizeof(KEY_VALUE));//自带清零,防止内存不够
	node->childrens = (btree_node**)calloc(1, (2*t) * sizeof(btree_node*));
	node->num = 0;

	return node;
}

void btree_destroy_node(btree_node *node) {

	assert(node);

	free(node->childrens);
	free(node->keys);
	free(node);
	
}


void btree_create(btree *T, int t) {
	T->t = t;
	
	btree_node *x = btree_create_node(t, 1);
	T->root = x;
	
}


void btree_split_child(btree *T, btree_node *x, int i) {
	int t = T->t;

	btree_node *y = x->childrens[i];
	btree_node *z = btree_create_node(t, y->leaf);

	z->num = t - 1;

	int j = 0;
	for (j = 0;j < t-1;j ++) {
		z->keys[j] = y->keys[j+t];
	}
	if (y->leaf == 0) {
		for (j = 0;j < t;j ++) {
			z->childrens[j] = y->childrens[j+t];
		}
	}

	y->num = t - 1;
	for (j = x->num;j >= i+1;j --) {
		x->childrens[j+1] = x->childrens[j];
	}

	x->childrens[i+1] = z;

	for (j = x->num-1;j >= i;j --) {
		x->keys[j+1] = x->keys[j];
	}
	x->keys[i] = y->keys[t-1];
	x->num += 1;
	
}

void btree_insert_nonfull(btree *T, btree_node *x, KEY_VALUE k) {

	int i = x->num - 1;

	if (x->leaf == 1) {
		
		while (i >= 0 && x->keys[i] > k) {
			x->keys[i+1] = x->keys[i];
			i --;
		}
		x->keys[i+1] = k;
		x->num += 1;
		
	} else {
		while (i >= 0 && x->keys[i] > k) i --;

		if (x->childrens[i+1]->num == (2*(T->t))-1) {
			btree_split_child(T, x, i+1);
			if (k > x->keys[i+1]) i++;
		}

		btree_insert_nonfull(T, x->childrens[i+1], k);
	}
}


//节点为根节点,而且根节点已经满了,做一个空节点在根节点上方在进行分裂
void btree_insert(btree *T, KEY_VALUE key) {
	//int t = T->t;

	btree_node *r = T->root;
	if (r->num == 2 * T->t - 1) {
		
		btree_node *node = btree_create_node(T->t, 0);
		T->root = node;

		node->childrens[0] = r;

		btree_split_child(T, node, 0);

		int i = 0;
		if (node->keys[0] < key) i++;
		btree_insert_nonfull(T, node->childrens[i], key);
		
	} else {
		btree_insert_nonfull(T, r, key);
	}
}

void btree_traverse(btree_node *x) {
	int i = 0;

	for (i = 0;i < x->num;i ++) {
		if (x->leaf == 0) 
			btree_traverse(x->childrens[i]);
		printf("%C ", x->keys[i]);
	}

	if (x->leaf == 0) btree_traverse(x->childrens[i]);
}

void btree_print(btree *T, btree_node *node, int layer)
{
	btree_node* p = node;
	int i;
	if(p){
		printf("\nlayer = %d keynum = %d is_leaf = %d\n", layer, p->num, p->leaf);
		for(i = 0; i < node->num; i++)
			printf("%c ", p->keys[i]);
		printf("\n");
#if 0
		printf("%p\n", p);
		for(i = 0; i <= 2 * T->t; i++)
			printf("%p ", p->childrens[i]);
		printf("\n");
#endif
		layer++;
		for(i = 0; i <= p->num; i++)
			if(p->childrens[i])
				btree_print(T, p->childrens[i], layer);
	}
	else printf("the tree is empty\n");
}


int btree_bin_search(btree_node *node, int low, int high, KEY_VALUE key) {
	int mid;
	if (low > high || low < 0 || high < 0) {
		return -1;
	}

	while (low <= high) {
		mid = (low + high) / 2;
		if (key > node->keys[mid]) {
			low = mid + 1;
		} else {
			high = mid - 1;
		}
	}

	return low;
}


//{child[idx], key[idx], child[idx+1]} 
void btree_merge(btree *T, btree_node *node, int idx) {

	btree_node *left = node->childrens[idx];
	btree_node *right = node->childrens[idx+1];

	int i = 0;

	/data merge
	left->keys[T->t-1] = node->keys[idx];//把c拷贝到B后面
	for (i = 0;i < T->t-1;i ++) {
		left->keys[T->t+i] = right->keys[i];
	}
	if (!left->leaf) {
		for (i = 0;i < T->t;i ++) {
			left->childrens[T->t+i] = right->childrens[i];
		}
	}
	left->num += T->t;

	//destroy right
	btree_destroy_node(right);

	//node: C没有了FI要前移
	for (i = idx+1;i < node->num;i ++) {
		node->keys[i-1] = node->keys[i];
		node->childrens[i] = node->childrens[i+1];
	}
	node->childrens[i+1] = NULL;
	node->num -= 1;

	if (node->num == 0) {
		T->root = left;
		btree_destroy_node(node);
	}
}

void btree_delete_key(btree *T, btree_node *node, KEY_VALUE key) {

	if (node == NULL) return ;

	int idx = 0, i;

	while (idx < node->num && key > node->keys[idx]) {
		idx ++;
	}

	if (idx < node->num && key == node->keys[idx]) {

		if (node->leaf) {
			
			for (i = idx;i < node->num-1;i ++) {
				node->keys[i] = node->keys[i+1];
			}

			node->keys[node->num - 1] = 0;
			node->num--;
			
			if (node->num == 0) { //root
				free(node);
				T->root = NULL;
			}

			return ;
		} else if (node->childrens[idx]->num >= T->t) {

			btree_node *left = node->childrens[idx];
			node->keys[idx] = left->keys[left->num - 1];

			btree_delete_key(T, left, left->keys[left->num - 1]);
			
		} else if (node->childrens[idx+1]->num >= T->t) {

			btree_node *right = node->childrens[idx+1];
			node->keys[idx] = right->keys[0];

			btree_delete_key(T, right, right->keys[0]);
			
		} else {

			btree_merge(T, node, idx);
			btree_delete_key(T, node->childrens[idx], key);
			
		}
		
	} else {

		btree_node *child = node->childrens[idx];
		if (child == NULL) {
			printf("Cannot del key = %d\n", key);
			return ;
		}

		if (child->num == T->t - 1) {

			btree_node *left = NULL;
			btree_node *right = NULL;
			if (idx - 1 >= 0)
				left = node->childrens[idx-1];
			if (idx + 1 <= node->num) 
				right = node->childrens[idx+1];

			if ((left && left->num >= T->t) ||
				(right && right->num >= T->t)) {

				int richR = 0;
				if (right) richR = 1;
				if (left && right) richR = (right->num > left->num) ? 1 : 0;

				if (right && right->num >= T->t && richR) { //borrow from next
					child->keys[child->num] = node->keys[idx];
					child->childrens[child->num+1] = right->childrens[0];
					child->num ++;

					node->keys[idx] = right->keys[0];
					for (i = 0;i < right->num - 1;i ++) {
						right->keys[i] = right->keys[i+1];
						right->childrens[i] = right->childrens[i+1];
					}

					right->keys[right->num-1] = 0;
					right->childrens[right->num-1] = right->childrens[right->num];
					right->childrens[right->num] = NULL;
					right->num --;
					
				} else { //borrow from prev

					for (i = child->num;i > 0;i --) {
						child->keys[i] = child->keys[i-1];
						child->childrens[i+1] = child->childrens[i];
					}

					child->childrens[1] = child->childrens[0];
					child->childrens[0] = left->childrens[left->num];
					child->keys[0] = node->keys[idx-1];
					
					child->num ++;

					node->key[idx-1] = left->keys[left->num-1];
					left->keys[left->num-1] = 0;
					left->childrens[left->num] = NULL;
					left->num --;
				}

			} else if ((!left || (left->num == T->t - 1))
				&& (!right || (right->num == T->t - 1))) {

				if (left && left->num == T->t - 1) {
					btree_merge(T, node, idx-1);					
					child = left;
				} else if (right && right->num == T->t - 1) {
					btree_merge(T, node, idx);
				}
			}
		}

		btree_delete_key(T, child, key);
	}
	
}


int btree_delete(btree *T, KEY_VALUE key) {
	if (!T->root) return -1;

	btree_delete_key(T, T->root, key);
	return 0;
}


int main() {
	btree T = {0};

	btree_create(&T, 3);
	srand(48);

	int i = 0;
	char key[26] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
	for (i = 0;i < 26;i ++) {
		//key[i] = rand() % 1000;
		printf("%c ", key[i]);
		btree_insert(&T, key[i]);
	}

	btree_print(&T, T.root, 0);

	for (i = 0;i < 26;i ++) {
		printf("\n---------------------------------\n");
		btree_delete(&T, key[25-i]);
		//btree_traverse(T.root);
		btree_print(&T, T.root, 0);
	}
	
}



b+tree

区别:
b-tree:所有节点存储数据。当有非常多的节点时,有一些节点是存储在内存中的,btree会找一次后,还会找下一次。
b+tree:叶子节点存储数据,内节点索引用的。可以把所有索引放入内存,数据不会放在内存中,找到需要的,就一次寻址就可以再磁盘中找到数据。b+bree更加适合做磁盘索引。
内节点就是有子节点。
场景:mysql(InnoDB、MangoDB、等等)
在这里插入图片描述
除了叶子节点其他的节点都没有地址
减少树的高度
范围查找:需要找出>5的数不需要遍历树,效率高

算法可视化网站:
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值