LeetCode 33. Search in Rotated Sorted Array

本文介绍了一种在旋转过的有序数组中查找目标值的算法。数组由递增序列旋转而成,存在一个唯一递减点。算法采用二分法,根据目标值与中间值的关系决定搜索方向,确保O(logn)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description:Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

Your algorithm’s runtime complexity must be in the order of O(log n).

Example 1:

Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:

Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1

解题思路:题目的大概意思是,一个递增序列(不含重复数据)切成2半,前一半放到后面去组成新的序列,该序列有个特点,只有在分界点上递减,其他都是递增的。现在给定一个目标,找出该目标所在的位置,找不到返回-1。因为要求时间复杂度为O(log n),所有得使用二分法,当前数组可以使用二分法。如果mid的数据等于target,则立即返回mid。如果left到mid的数据是连续递增的,并且target在这个范围内,则在该范围内继续使用二分法,如果不在该范围内,则在mid到right使用二分法。如果left到mid数据不是连续递增的,说明在mid到right是连续递增的,如果target在mid到right范围内,则继续使用二分法,否则,在left到mid的范围内使用二分法。最后都找不到的话,返回-1。

参考代码:

int bin_search(int left, int right, vector<int> nums, int target) {
    //递归用if
    while (left <= right) {
        int mid = (left + right) / 2;
        if (target == nums[mid])
            return mid;
        if (nums[mid] >= nums[left] && target >= nums[left] && target < nums[mid]) {
            //return bin_search(left, mid - 1, nums, target);
            right = mid - 1;
        }
        else if (nums[mid] >= nums[left] && (target <= nums[left] || (target > nums[mid]))) {
            //return bin_search(mid + 1, right, nums, target);
            left = mid + 1;
        }
        else if (nums[mid] <= nums[left] && (target > nums[mid]) && target <= nums[right]) {
            //return bin_search(mid + 1, right, nums, target);
            left = mid + 1;
        }
        else {
            //return bin_search(left, mid-1, nums, target);
            right = mid - 1;
        }
        
    }
    return -1;
}
int MySolution::search(vector<int>& nums, int target) {
    return bin_search(0, nums.size() - 1, nums, target);
}

总结:最后发现递归和循环效率相差很大,这里给出测试结果
使用循环二分查找:
Runtime: 4 ms, faster than 81.73% of C++ online submissions for Search in Rotated Sorted Array.
Memory Usage: 8.9 MB, less than 43.37% of C++ online submissions for Search in Rotated Sorted Array.

使用递归二分查找:
Runtime: 8 ms, faster than 15.65% of C++ online submissions for Search in Rotated Sorted Array.
Memory Usage: 10.7 MB, less than 6.03% of C++ online submissions for Search in Rotated Sorted Array.

### LeetCode Problem 33 的 C++ 实现 LeetCode33 题通常被称为 **Search in Rotated Sorted Array**,其目标是在一个旋转后的有序数组中查找某个特定的目标值。如果存在该目标值,则返回它的索引;否则返回 `-1`。 以下是基于二分查找法的 C++ 解决方案: ```cpp class Solution { public: int search(vector<int>& nums, int target) { int left = 0; int right = nums.size() - 1; while (left <= right) { int mid = left + (right - left) / 2; if (nums[mid] == target) { return mid; // 找到目标值 } // 判断哪一侧是有序的 if (nums[left] <= nums[mid]) { // 左侧有序 if (target >= nums[left] && target < nums[mid]) { right = mid - 1; // 缩小范围至左侧 } else { left = mid + 1; // 转向右侧 } } else { // 右侧有序 if (target > nums[mid] && target <= nums[right]) { left = mid + 1; // 缩小范围至右侧 } else { right = mid - 1; // 转向左侧 } } } return -1; // 如果未找到目标值 } }; ``` 上述代码实现了针对旋转排序数组的有效搜索算法[^4]。通过判断当前中间位置两侧哪个部分保持有序,可以进一步缩小搜索空间,从而达到高效的目的。 #### 关键点解析 - 使用 `while (left <= right)` 循环条件来确保不会错过任何可能解。 - 当前区间 `[left, right]` 中间位置定义为 `mid`,并比较 `nums[mid]` 和目标值的关系。 - 若左半边有序 (`nums[left] <= nums[mid]`) 并且目标位于此范围内,则继续在左边查找;反之则转向右边。 - 同理处理右半边的情况。 最终时间复杂度为 \(O(\log n)\),其中 \(n\) 是输入数组长度。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值