2017 CVPR之image matting(抠图):Deep Image Matting

本文介绍了Deep Image Matting技术,针对图像抠图中前景和背景颜色相近或纹理复杂的问题,提出了一种两阶段的深度学习模型。第一阶段采用编码解码器网络结合trimap预测alpha matte,第二阶段通过精细化网络进一步优化边缘。模型利用alpha预测损失和组合损失进行训练,并创建了一个新的matting数据集。实验结果显示,该方法显著提高了抠图的精度和边缘清晰度。
摘要由CSDN通过智能技术生成

Deep Image Matting

当前的问题及概述
当图像具有相似的前景和背景颜色或复杂的纹理时,以往的算法性能较差,主要是两个方面:1)只使用low-level feature,2)缺少high-level context。
本文较之间的工作最大的改进在于,本文更加细致的学习了alpha mattes中的自然结构,而不是主要依赖颜色信息进行image matting。
模型及loss
2.1 New matting dataset
为了训练我们的matting网络,我们通过将真实图像中的对象合成到新的背景中来创建一个更大的数据集。下图中,b为alpha matte,c为纯前景色,d-f为将前景放置到不同背景的图。
在这里插入图片描述
2.2 network
本文提出的框架分为两个部分,Matting encoder-decoder stage和Matting refinement stage,第一部分是一个深度卷积编解码器网络,它以图像和相应的trimap作为输入,预测图像的alpha matte。第二部分是一个小的卷积网络,它对第一个网络的alpha matte预处理进行了refine,使其具有更精确的alpha值和更锐化的边缘。
在这里插入图片描述
2.3Matting encoder-decoder stage

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值