Deep Image Matting
当前的问题及概述:
当图像具有相似的前景和背景颜色或复杂的纹理时,以往的算法性能较差,主要是两个方面:1)只使用low-level feature,2)缺少high-level context。
本文较之间的工作最大的改进在于,本文更加细致的学习了alpha mattes中的自然结构,而不是主要依赖颜色信息进行image matting。
模型及loss:
2.1 New matting dataset
为了训练我们的matting网络,我们通过将真实图像中的对象合成到新的背景中来创建一个更大的数据集。下图中,b为alpha matte,c为纯前景色,d-f为将前景放置到不同背景的图。
2.2 network
本文提出的框架分为两个部分,Matting encoder-decoder stage和Matting refinement stage,第一部分是一个深度卷积编解码器网络,它以图像和相应的trimap作为输入,预测图像的alpha matte。第二部分是一个小的卷积网络,它对第一个网络的alpha matte预处理进行了refine,使其具有更精确的alpha值和更锐化的边缘。
2.3Matting encoder-decoder stage