【漫话机器学习系列】043.提前停止训练(Early Stopping)-早停法

92b0a9c675454cca982fc4338f413dfc.jpeg

提前停止训练(Early Stopping)

提前停止(Early Stopping) 是一种在训练机器学习模型(尤其是深度学习模型)时常用的正则化技术,用于防止过拟合并提升模型的泛化能力。它通过监控验证集的性能,在性能不再提高或开始下降时终止训练,从而选择性能最佳的模型。


工作原理

提前停止的基本思想是:

  1. 在每个训练轮次(epoch)后,评估模型在验证集上的性能(通常使用损失函数值或评价指标,如准确率)。
  2. 如果验证集性能在多个轮次内未改善,则停止训练并恢复到性能最佳的模型状态。

实现步骤

  1. 分割数据集: 将训练数据分为训练集和验证集,训练集用于优化模型参数,验证集用于监控模型的泛化性能。

  2. 设定监控指标: 选择一个监控指标(如验证损失、验证准确率等),作为衡量模型性能的标准。

  3. 设定耐心值(Patience): 耐心值是指允许验证集性能在指定轮次内未改善的次数。如果超过耐心值还未见性能提升,则停止训练。

  4. 保存最佳模型: 在训练过程中,记录验证集性能最优的模型状态,停止训练后使用该状态作为最终模型。


优点

  1. 防止过拟合:通过终止训练,避免模型过度拟合训练数据。
  2. 提高泛化能力:选择验证集上性能最优的模型,提升模型对未见数据的表现。
  3. 节省训练时间<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值