【有源码】基于知识图谱的二手房房价预测与分析-随机森林-线性回归-决策树-算法可选Python毕设

注意:该项目只展示部分功能,如需了解,文末咨询即可。

1.开发环境

开发语言:Python
所用算法:随机森林、线性回归、决策树(算法可选)
数据库:MySQL
开发环境:Pycharm

2 系统设计

2.1 设计背景

在大数据和人工智能技术日益发展的背景下,房地产市场的数据分析和预测能力变得尤为重要。二手房市场作为房地产交易中的重要组成部分,其价格走势不仅受到供求关系的影响,还涉及到房屋的地理位置、面积、楼层、装修情况等多个复杂因素。传统的价格预测模型往往难以处理这些复杂的、多维度的数据关联。因此,基于知识图谱的二手房房价预测与分析系统应运而生。知识图谱能够将房产相关的各种信息以图的形式进行结构化表示,从而更好地揭示不同特征之间的潜在关系,并为房价预测提供更加准确和丰富的参考依据。

开发基于知识图谱的二手房房价预测与分析系统,旨在通过深度挖掘房屋属性与价格之间的复杂关系,为购房者、房地产公司以及政府相关部门提供科学的决策支持。系统设计包含数据爬取、数据处理、数据分析、以及大屏可视化展示等多个环节。通过系统化的数据处理,可以对二手房的历史成交记录、挂牌时间、地理位置等信息进行全面分析,并结合知识图谱技术,探索不同因素对房价的影响程度。特别是在数据分析过程中,系统不仅能够实现对房价的精准预测,还能够通过可视化手段,直观地展示房屋面积与单价、房屋结构与房价、不同区域的总价与单价分布等多维度的分析结果。

2.2 设计内容

基于知识图谱的二手房房价预测与分析系统的设计内容包括数据的采集、处理、分析以及最终的可视化展示。首先,通过Scrapy爬虫获取链家网站上二手房的相关数据,确保数据的全面性和准确性。接下来,对数据进行清洗、转换、去重等处理,保证数据的质量和一致性。在数据分析阶段,系统将通过聚类、分类、关联分析等方法,深入挖掘数据背后的信息,并结合知识图谱技术,揭示房价波动的潜在驱动因素。最后,系统还将通过一个基于Python开发的Web平台,结合Echarts可视化框架,提供大屏展示功能,使得用户可以从多个维度对二手房市场进行全面的了解,并通过知识图谱实现更为精确的房价预测。这不仅能够为购房者提供参考,还可以帮助房地产企业优化市场策略,提升竞争力。

3 系统页面展示

3.1 功能展示视频

基于知识图谱的二手房房价预测与分析随机森林 线性回归 决策树

3.2 展示页面

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 更多推荐

计算机毕设选题精选汇总
基于Hadoop大数据电商平台用户行为分析与可视化系统
于Python的旅游数据可视化分析与推荐系统
基于Python的餐馆美食满意度分析与可视化
基于Spark大数据的餐饮外卖数据分析可视化系统
Django+Python数据分析岗位招聘信息爬取与分析
基于Python的股票数据分析与价格预测TensorFlow+LSTM模型

5 部分功能代码

5.1 知识图谱代码

import networkx as nx
import matplotlib.pyplot as plt
from rdflib import Graph, URIRef, Literal, Namespace
from rdflib.namespace import RDF, RDFS

# 示例房屋数据
houses = [
    {'id': 'house1', 'area': 80, 'total_price': 800000, 'unit_price': 10000, 'district': 'Xuhui', 'structure': '2B1B'},
    {'id': 'house2', 'area': 100, 'total_price': 1200000, 'unit_price': 12000, 'district': 'Pudong', 'structure': '3B2B'},
    {'id': 'house3', 'area': 60, 'total_price': 600000, 'unit_price': 10000, 'district': 'Minhang', 'structure': '1B1B'},
]
# 创建RDF图
g = Graph()

# 定义命名空间
EX = Namespace("http://example.org/")

# 为每个房屋添加属性和关系
for house in houses:
    house_ref = URIRef(EX[house['id']])
    
    # 添加房屋到图中
    g.add((house_ref, RDF.type, EX.House))
    g.add((house_ref, EX.area, Literal(house['area'])))
    g.add((house_ref, EX.total_price, Literal(house['total_price'])))
    g.add((house_ref, EX.unit_price, Literal(house['unit_price'])))
    g.add((house_ref, EX.district, Literal(house['district'])))
    g.add((house_ref, EX.structure, Literal(house['structure'])))

# 打印RDF三元组
for s, p, o in g:
    print(s, p, o)
# 创建NetworkX图
G = nx.Graph()

# 添加节点和边
for house in houses:
    G.add_node(house['id'], label='House')
    G.add_edge(house['id'], f"Area: {house['area']}m²")
    G.add_edge(house['id'], f"Total Price: ¥{house['total_price']}")
    G.add_edge(house['id'], f"Unit Price: ¥{house['unit_price']}/m²")
    G.add_edge(house['id'], f"District: {house['district']}")
    G.add_edge(house['id'], f"Structure: {house['structure']}")

# 绘制图形
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=3000, font_size=10, font_weight='bold')
plt.show()

5.2 房价预测代码

import pandas as pd

# 示例数据
data = {
    'area': [80, 100, 60, 85, 120, 70, 95, 110, 75, 90],
    'district': ['Xuhui', 'Pudong', 'Minhang', 'Xuhui', 'Pudong', 'Minhang', 'Xuhui', 'Pudong', 'Minhang', 'Xuhui'],
    'structure': ['2B1B', '3B2B', '1B1B', '2B2B', '3B2B', '1B1B', '2B1B', '3B2B', '1B1B', '2B2B'],
    'total_price': [800000, 1200000, 600000, 850000, 1500000, 700000, 950000, 1350000, 720000, 1050000]
}

# 创建DataFrame
df = pd.DataFrame(data)

# 显示数据
print(df)
from sklearn.preprocessing import LabelEncoder

# 对分类数据进行编码
le_district = LabelEncoder()
le_structure = LabelEncoder()

df['district'] = le_district.fit_transform(df['district'])
df['structure'] = le_structure.fit_transform(df['structure'])

# 显示编码后的数据
print(df)
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

# 分割数据为训练集和测试集
X = df[['area', 'district', 'structure']]
y = df['total_price']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X_train, y_train)

# 进行预测
y_pred = model.predict(X_test)

# 计算模型性能
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')

# 显示预测结果
for i in range(len(y_test)):
    print(f"Actual price: {y_test.iloc[i]}, Predicted price: {y_pred[i]}")

源码项目、定制开发、文档报告、PPT、代码答疑
希望和大家多多交流!!

  • 25
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
毕业设计,基于SpringBoot+Vue+MySQL开发的公寓报修管理系统,源码+数据库+毕业论文+视频演示 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本公寓报修管理系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信息,使用这种软件工具可以帮助管理人员提高事务处理效率,达到事半功倍的效果。此公寓报修管理系统利用当下成熟完善的Spring Boot框架,使用跨平台的可开发大型商业网站的Java语言,以及最受欢迎的RDBMS应用软件之一的MySQL数据库进行程序开发。公寓报修管理系统有管理员,住户,维修人员。管理员可以管理住户信息和维修人员信息,可以审核维修人员的请假信息,住户可以申请维修,可以对维修结果评价,维修人员负责住户提交的维修信息,也可以请假。公寓报修管理系统的开发根据操作人员需要设计的界面简洁美观,在功能模块布局上跟同类型网站保持一致,程序在实现基本要求功能时,也为数据信息面临的安全问题提供了一些实用的解决方案。可以说该程序在帮助管理者高效率地处理工作事务的同时,也实现了数据信息的整体化,规范化与自动化。 关键词:公寓报修管理系统;Spring Boot框架;MySQL;自动化;VUE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值