M/M/1排队论基本公式

文章介绍了排队论中的关键参数,如λ表示单位时间到达的顾客数量,ρ是服务强度,即λ/u,描述了系统的繁忙程度。平均队长Ls和平均排队长度Lq分别给出了系统中顾客总等待人数和服务系统前的平均排队人数。此外,还提到了平均逗留时间和平均排队时间的计算公式。
摘要由CSDN通过智能技术生成

λ \lambda λ是单位时间内到达的顾客数量,例如平均每小时来四个人,就是 λ = 4 \lambda = 4 λ=4
1 λ \frac{1}{\lambda} λ1是顾客到达的时间间隔,例如每隔15分钟来一个顾客,其实就是一小时来4个顾客,和 λ \lambda λ的意思一样,说法不一样
u u u是单位时间内服务的顾客数量,例如一小时服务10个顾客
1 u \frac{1}{u} u1 是服务时间的间隔,例如每6分钟服务一个顾客

服务强度: ρ = λ u \rho = \frac{\lambda}{u} ρ=uλ

顾客数量为 n n n的概率: P n = ( 1 − ρ ) ρ n P_{n} = (1-\rho) \rho^{n} Pn=(1ρ)ρn

没有顾客的概率 P 0 P_{0} P0,有1个顾客的概率 P 1 P_{1} P1,不多于2个顾客概率 P 0 + P 1 + P 2 P_{0}+P_{1}+P_{2} P0+P1+P2

平均队长: L s = λ u − λ L_{s} = \frac{\lambda}{u-\lambda} Ls=uλλ。队长指的是排队等待人数+正在接受服务人数

平均排队长度: L q = ρ λ u − λ L_{q} = \frac{\rho\lambda}{u-\lambda} Lq=uλρλ。排队等待的人数

平均逗留时间: w s = 1 u − λ w_{s} = \frac{1}{u - \lambda} ws=uλ1。排队时间+接受服务时间

平均排队时间: w q = ρ u − λ w_{q} = \frac{\rho}{u - \lambda} wq=uλρ。排队时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值