火柴排队

火柴排队

时间限制: 1 Sec  内存限制: 128 MB
提交: 11  解决: 4
[提交] [状态] [讨论版] [命题人:外部导入]

题目描述

涵涵有两盒火柴,每盒装有n根火柴,每根火柴都有一个高度。现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为: 
其中ai表示第一列火柴中第i个火柴的高度,bi表示第二列火柴中第i 个火柴的高度。
每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对99,999,997取模的结果。

 

输入

每组输入数据共三行,第一行包含一个整数n,表示每盒中火柴的数目。
第二行有n个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。
第三行有n个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。
数据规模:
对于10%的数据,1≤n≤10;
对于30%的数据,1≤n≤100;
对于60%的数据,1≤n≤1,000;
对于100%的数据,1≤n≤100,000,0≤火柴高度≤231−1。

 

输出

每组输出共一行,包含一个整数,表示最少交换次数对99,999,997取模的结果。
下面是对样例数据的解释:
样例一:
最小距离是0,最少需要交换1次,比如:交换第1列的前2根火柴或者交换第2列的前2根火柴。
样例二:
最小距离是10,最少需要交换2次,比如:交换第1列的中间2根火柴的位置,再交换第2列中后2根火柴的位置。

 

样例输入

复制

4
2 3 1 4
3 2 1 4

4
1 3 4 2
1 7 2 4

 

样例输出

复制

1

2

 

来源/分类

NOIP 提高组 2013 

这道题可以思维转换一下,因为求平方和的差值最小所以当俩个都最接近的时候铁定差值最小,所以肯定是要给它们先拍一个序的,然后就转换成了一个逆序问题,离散下位置求逆序就行

 

4

1 3 4 2

1 7 2 4

比如第一行初始位置:

1, 2, 3, 4

排序后1, 4, 2, 3

第二行1 2 4 7

排序后1 2 3 4;

所以设一个c[i]数组

c[1] = 1;

c[2] = 4;

c[3] = 2;

c[4] = 3;

然后求逆序就行,转化成了一个逆序数问题

# include <iostream>
# include <cstring>
# include <cstdio>
# include <algorithm>

using namespace std;
const int maxn = 100005;
long long int k;
const int mod = 99999997;
struct node
{
    int id;
    int x;
}s_a[maxn], s_b[maxn];
void Merge(int arr[], int start, int mid, int end, int temp[])
{
    int first = start;
    int second = mid + 1;
    int length = 0;
    while(first <= mid && second <= end)
    {
        if(arr[first] <= arr[second])
        {
            temp[length++] = arr[first++];
        }
        else
        {   k += mid - first + 1;
            k%= mod;
            temp[length++] = arr[second++];
        }
    }
    while(first <= mid)
    {
        temp[length++] = arr[first++];
    }
    while(second <= end)
    {
        temp[length++] = arr[second++];
    }
    for(int i = 0; i < length; i++)
    {
        arr[start + i] = temp[i];
    }
}

void Merge_Sort(int arr[], int start, int end, int temp[])
{
    if(start >= end)
    {
        return ;
    }
    int mid = (start + end) / 2;
    Merge_Sort(arr, start, mid, temp);
    Merge_Sort(arr, mid + 1, end, temp);
    Merge(arr, start, mid, end, temp);
}


bool cmp(struct node a, struct node b)
{
    return a.x < b.x;
}
int main()
{
    int n;
    while(scanf("%d",&n) !=EOF)
    {
          k = 0;
          int temp[maxn];
          for(int i = 0; i < n; i++)
          {
              scanf("%d", &s_a[i].x);
              s_a[i].id = i;
          }
          for(int i = 0; i < n; i++)
          {
              scanf("%d", &s_b[i].x);
              s_b[i].id = i;
          }
          sort(s_a, s_a + n, cmp);
          sort(s_b, s_b + n, cmp);
          int arr[maxn];
          for(int i = 0; i < n; i++)
          {
              arr[s_a[i].id] = s_b[i].id;
          }
          Merge_Sort(arr, 0, n - 1, temp);
          cout << k << endl;
    }
    return 0;
}

 

展开阅读全文

没有更多推荐了,返回首页