IT City company developing computer games decided to upgrade its way to reward its employees. Now it looks the following way. After a new game release users start buying it actively, and the company tracks the number of sales with precision to each transaction. Every time when the next number of sales is not divisible by any number from 2 to 10 every developer of this game gets a small bonus.
A game designer Petya knows that the company is just about to release a new game that was partly developed by him. On the basis of his experience he predicts that n people will buy the game during the first month. Now Petya wants to determine how many times he will get the bonus. Help him to know it.
The only line of the input contains one integer n (1 ≤ n ≤ 1018) — the prediction on the number of people who will buy the game.
Output one integer showing how many numbers from 1 to n are not divisible by any number from 2 to 10.
Examples
Input
Copy
12
Output
Copy
2
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<queue>
#define bug printf("***\n");
//#define mem0 memset(a, 0, sizeof(a));
using namespace std;
typedef pair<long long, int> par;
const int mod = 1e9+7;
const int INF = 1e9;
const int N = 10010;
using namespace std;
int main()
{
long long n;
while(~scanf("%lld", &n)) {
//(能被2整除一定能被4整除,同理5和9,最后只剩下2,3,5,7)
n = n - (n/2+n/3+n/5+n/7) + (n/6+n/10+n/14+n/15+n/21+n/35) - (n/30+n/42+n/70+n/105) + n/210;
// 全集和减去能被2,3,5,7整除的个数(容斥原理即可求出)
printf("%lld\n", n);
}
return 0;
}