codeforce 630k-Indivisibility(容斥原理)

K. Indivisibility
time limit per test
0.5 seconds
memory limit per test
64 megabytes
input
standard input
output
standard output

IT City company developing computer games decided to upgrade its way to reward its employees. Now it looks the following way. After a new game release users start buying it actively, and the company tracks the number of sales with precision to each transaction. Every time when the next number of sales is not divisible by any number from 2 to 10 every developer of this game gets a small bonus.

A game designer Petya knows that the company is just about to release a new game that was partly developed by him. On the basis of his experience he predicts that n people will buy the game during the first month. Now Petya wants to determine how many times he will get the bonus. Help him to know it.

Input

The only line of the input contains one integer n (1 ≤ n ≤ 1018) — the prediction on the number of people who will buy the game.

Output

Output one integer showing how many numbers from 1 to n are not divisible by any number from 2 to 10.

Examples

Input

Copy

 
  

12

Output

Copy

 
  

2


题目大意:求出1~n中不能被2~10中的数整除的数的个数。

解题思路:这一 题如果暴力枚举肯定不行,所以我们用到离散数学中的一个容斥原理(就是一个集合的关系),如果你知道这个原理就可以直接做出这一题。

AC代码:
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<queue>
#define bug printf("***\n");
//#define mem0 memset(a, 0, sizeof(a));
using namespace std;
typedef pair<long long, int> par;
const int mod = 1e9+7;
const int INF = 1e9;
const int N = 10010;
using namespace std;

int main()
{
    long long n;
    while(~scanf("%lld", &n)) {
        //(能被2整除一定能被4整除,同理5和9,最后只剩下2,3,5,7)
        n = n - (n/2+n/3+n/5+n/7) + (n/6+n/10+n/14+n/15+n/21+n/35) - (n/30+n/42+n/70+n/105) + n/210;
        // 全集和减去能被2,3,5,7整除的个数(容斥原理即可求出)
        printf("%lld\n", n);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值