何为NLI(自然语言推理)?

一、定义

NLI(Natural Language Inference),故名思意,自然语言推理。它主要用来判断两个句子在语义上的关系,一般可以分为:Entailment(蕴含)、Contradiction(矛盾)、Neutral(中立)。

二、作用

在NLP中,判断蕴含或是矛盾的关系十分必要,例如信息检索、语义分析、常识推理等方面都会用到。评价标准简单有效,可以直接在NLI中专注于语义理解和语义表示,如此生成好的句子就可以直接迁移应用到其他的任务。

三、分类
1.级别分类
  1. 词级别推理(RLE)
  2. 句子级别推理(RTE)
2.方法分类
  1. 混合模型
  2. 深度学习(RNN,CNN)
2.1混合模型

混合模型包括两种:

  1. 文本相似度(文本对齐):计算前提和假设之间的相似度来判断其之间是否构成蕴含关系。在此基础上演化出基于文本对齐的方法,更关注句子中不同的部分。
  2. 逻辑演算(文本转换):将文本表示成数学逻辑表达式,构成事实集合,然后用逻辑推理规则判断是否能根据前提推理出假设。
### 自然语言推理NLI)在AI和NLP中的应用 自然语言推理(Natural Language Inference, NLI),作为自然语言处理领域的重要任务之一,其核心目标在于判断两个文本片段间的逻辑关系。这种能力被广泛应用于多种AI和NLP的实际场景中,具体如下: #### 1. **机器阅读理解** 通过自然语言推理技术,系统可以分析文档内容并回答关于该文档的问题。这依赖于识别前提与假设之间的逻辑关联来提取信息[^1]。 ```python # 示例:基于NLI的简单问答实现伪代码 def answer_question(passage, question): premise = passage_to_premise(passage) hypothesis = question_to_hypothesis(question) # 判断两者的关系 relation = infer_relation(premise, hypothesis) if relation == 'entails': return "Yes" elif relation == 'contradicts': return "No" else: return "Unknown" ``` #### 2. **问答系统** 在构建智能问答系统时,利用NLI可以帮助验证候选答案是否可以从原始文本中推导出来。这种方法提高了系统的准确性以及用户体验水平[^3]。 #### 3. **对话生成** 为了使聊天机器人更加智能化,它们需要具备一定程度的理解力去维持连贯且有意义的对话流。借助NLI算法,这些程序能更好地把握上下文中隐含的信息,并据此做出恰当回应[^5]。 #### 4. **情感分析与观点挖掘** 通过对评论、文章等内容执行NLI操作,可有效检测其中所表达的情绪倾向或者立场态度。这对于商业决策支持尤其有用,因为它允许企业快速评估公众对其产品或服务的看法变化趋势。 #### 5. **信息检索优化** 当用户输入查询请求时,搜索引擎不仅会寻找完全匹配的结果,还会运用NLI原理考虑那些虽然措辞不同但意义相近的内容项。这样做的好处是可以扩大覆盖范围同时保持高度相关性。 --- ### 实现案例——使用BERT模型完成SNLI上的NLI任务 以下是采用预训练Transformer架构如BERT,在标准数据集SNLI之上解决实际问题的一个简化版本流程说明: ```python from transformers import BertTokenizer, BertForSequenceClassification import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=3) def classify_nli(premise, hypothesis): inputs = tokenizer.encode_plus( premise, hypothesis, add_special_tokens=True, return_tensors='pt' ) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_id = logits.argmax().item() labels = ['Contradiction', 'Neutral', 'Entailment'] return labels[predicted_class_id] premise = "A man is walking his dog." hypothesis = "The man has a pet." result = classify_nli(premise, hypothesis) print(f"The relationship between the sentences is {result}.") ``` 此脚本展示了如何加载预先训练好的BERT权重并通过微调适应特定用途的过程[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值