Balanced Number HDU - 3709(数位DP+枚举中心点+好题)

传送门

  1. 题意:求[A,B]之内的平衡数
    • 0<=A<=B<=1e18
    • 平衡数:以某个点为中心,两边的权值和相等。其中每一位的等于离中心的距离 ∗ * 该位的数。例如4139以3为中心,左右两边权值和分别为 4 ∗ 2 + 1 ∗ 1 = 9 4*2+1*1=9 42+11=9 9 ∗ 1 = 9 9*1=9 91=9,即为平衡数。
    • 特别的,0~9都是平衡数
  2. 题解
    • 首先一个平衡数只可能以一个数位为中心,递增不解释
    • 枚举中心,然后某个数的权值和为0即为平衡数
    • 因为权值和可正可负,为避免出现负数,设置key,最初另一个数的权值和为key,最后判断也判断是否等于key即可
    • DP设置:dp[pos][mid][k1],k1表示mid一定时,某个数的权值和+key
  3. 注意事项:
    • MLE: int可能能达到2e7或更大,但是ll达不到emm
    • 这一题,枚举之后,我们多算了cnt-1次0,要减去。无论mid为多少,0总是满足,但是其他的数要为平衡数,只可能有一个mid。我们要减去0多枚举的cnt-1位
  4. 代码:
#include <cstring>
#include <iostream>
#include <string>
// #define int long long
#define ll long long
#define dbg(x) cout << #x << "===" << x << endl
using namespace std;

int key = 2000;       //最大的正权不会超过2000。9*19*(1+19)/2=1710
ll dp[23][23][4010];  // dp[pos][mid][num],pos:位数,mid:中心,k1:权+key
//不能设置+-权,倒是可以改变初始权,使不可能下标为负
int a[23], cnt;
//理论上是都可以设置lead的,但是并不是所有前置0都有影响
ll dfs(int pos, int mid, int k1, bool limit) {
    if (pos == -1) return k1 == key;
    if (!limit && dp[pos][mid][k1] != -1) return dp[pos][mid][k1];
    ll res = 0;
    int up = limit ? a[pos] : 9;
    for (int i = 0; i <= up; i++) {
        res += dfs(pos - 1, mid, k1 + (pos - mid) * i, limit && (i == a[pos]));
    }
    if (!limit) dp[pos][mid][k1] = res;
    return res;
}
ll solve(ll x) {
    if (x == -1) return 0;
    cnt = 0;
    while (x) {
        a[cnt++] = x % 10;
        x /= 10;
    }
    ll res = 0;
    for (int i = 0; i < cnt; i++) {
        res += dfs(cnt - 1, i, key, true);
    }
    return res - (cnt - 1);  // 0的贡献记录了cnt次
}
signed main() {
    memset(dp, -1, sizeof(dp));
    int T;
    cin >> T;
    while (T--) {
        ll l, r;
        cin >> l >> r;
        ll ans = solve(r) - solve(l - 1);
        cout << ans << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值