- 博客(5)
- 收藏
- 关注
原创 Python | 逐像元偏相关分析保姆级教程——多因素通用(附代码)
在遥感与生态研究中我们常常想知道排除第三个变量的干扰影响📌 举个例子:我们想研究与的关系,但又知道降水(PRE)也会影响 NPP。此时,可以告诉我们:在“控制住降水影响”之后,NPP 和气温之间到底还有没有显著关系。2001—2021年黄河流域植被覆盖变化及其驱动因素[J].干旱区研究,2024,41(08):1373-1384.DOI:10.13866/j.azr.2024.08.11.清晰一点的公式在这里:其中:rXY:变量 X 与 Y 的皮尔逊相关系数。
2025-05-06 22:00:23
475
原创 Python | 逐像元Pearson相关性分析保姆级教程——以黄河流域NPP与温度降水为例
遥感代码星球的第004篇代码分享今天分享基于栅格数据的Pearson相关性分析在遥感分析中,我们经常拥有多个年份的栅格数据(如年平均植被指数 NDVI 或净初级生产力 NPP)以及相应的气象变量(如年平均温度、降水等)。为了探究这两类变量之间的关联关系,是最常用的方法之一。黄河流域MOD17A2H NPP(500m)黄河流域1km温度,降水数据数据已经预处理,统一分辨率2000-2020年。
2025-05-05 20:55:59
547
原创 【数据分享】1992年-2022年ESA CCI 300米土地覆盖数据简介+下载教程+处理代码+数据分享
欧洲航天局气候变化倡议(ESA Climate Change Initiative, CCI)项目提供1992-2015年(2.0.7版)、 2016 至 2022 年(2.1 版)的全球土地覆盖(LC)地图,其空间分辨率为 0.002778°(在赤道附近约为 300 米)。v2.1.1(v2.0.7 的延续)——2016 年至 2020 年每年 300 米空间分辨率的全球土地覆盖图,与欧洲航天局 (ESA) 气候变化倡议 (CCI) 制作的 1992 年至 2015 年全球年度 LC 地图系列一致。
2025-05-04 19:28:49
805
1
原创 ArcGIS Pro| SHP文件内部线条消除+边界融合
03⚠️ 常见问题:“无效拓扑”报错怎么办?有时候,特别是处理复杂或来源不一的数据时,运行“融合”可能会遇到红色的ERROR 160196: Invalid Topology (无效拓扑)错误这通常意味着你的输入SHP文件存在几何错误(自相交、坏边界等)
2025-05-03 19:47:03
1911
原创 Python | 栅格数据Sen+MK长时间序列趋势分析+显著性检验保姆级教程
逐像元Sen+MK长时间序列趋势分析原理及代码,出图包括:Sen,MK,重分类后的tif结果
2025-05-03 17:41:22
1887
2
Python遥感 - 栅格数据Sen+MK长时间序列趋势分析+显著性检验代码(附示例数据)
2025-05-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人