自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

遥感喵星人聚集地

欢迎一起交流生态遥感,数据处理的知识与经验,这里将持续分享Python,Matlab,GEE,R等可用代码

  • 博客(5)
  • 收藏
  • 关注

原创 Python | 逐像元偏相关分析保姆级教程——多因素通用(附代码)

在遥感与生态研究中我们常常想知道排除第三个变量的干扰影响📌 举个例子:我们想研究与的关系,但又知道降水(PRE)也会影响 NPP。此时,可以告诉我们:在“控制住降水影响”之后,NPP 和气温之间到底还有没有显著关系。2001—2021年黄河流域植被覆盖变化及其驱动因素[J].干旱区研究,2024,41(08):1373-1384.DOI:10.13866/j.azr.2024.08.11.清晰一点的公式在这里:其中:rXY:变量 X 与 Y 的皮尔逊相关系数。

2025-05-06 22:00:23 475

原创 Python | 逐像元Pearson相关性分析保姆级教程——以黄河流域NPP与温度降水为例

遥感代码星球的第004篇代码分享今天分享基于栅格数据的Pearson相关性分析在遥感分析中,我们经常拥有多个年份的栅格数据(如年平均植被指数 NDVI 或净初级生产力 NPP)以及相应的气象变量(如年平均温度、降水等)。为了探究这两类变量之间的关联关系,是最常用的方法之一。黄河流域MOD17A2H NPP(500m)黄河流域1km温度,降水数据数据已经预处理,统一分辨率2000-2020年。

2025-05-05 20:55:59 547

原创 【数据分享】1992年-2022年ESA CCI 300米土地覆盖数据简介+下载教程+处理代码+数据分享

欧洲航天局气候变化倡议(ESA Climate Change Initiative, CCI)项目提供1992-2015年(2.0.7版)、 2016 至 2022 年(2.1 版)的全球土地覆盖(LC)地图,其空间分辨率为 0.002778°(在赤道附近约为 300 米)。v2.1.1(v2.0.7 的延续)——2016 年至 2020 年每年 300 米空间分辨率的全球土地覆盖图,与欧洲航天局 (ESA) 气候变化倡议 (CCI) 制作的 1992 年至 2015 年全球年度 LC 地图系列一致。

2025-05-04 19:28:49 805 1

原创 ArcGIS Pro| SHP文件内部线条消除+边界融合

03⚠️ 常见问题:“无效拓扑”报错怎么办?有时候,特别是处理复杂或来源不一的数据时,运行“融合”可能会遇到红色的ERROR 160196: Invalid Topology (无效拓扑)错误这通常意味着你的输入SHP文件存在几何错误(自相交、坏边界等)

2025-05-03 19:47:03 1911

原创 Python | 栅格数据Sen+MK长时间序列趋势分析+显著性检验保姆级教程

逐像元Sen+MK长时间序列趋势分析原理及代码,出图包括:Sen,MK,重分类后的tif结果

2025-05-03 17:41:22 1887 2

Python遥感 - 栅格数据Sen+MK长时间序列趋势分析+显著性检验代码(附示例数据)

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。

2025-05-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除