C语言实现四进制(四叉树)、十进制的Morton码

本文介绍了C语言实现四进制和十进制的Morton码,涉及地理信息系统中的线性四叉数和地址码概念。通过两种不同的方法解释了Morton码的生成,并提供了代码示例,讨论了四进制Morton码的不足以及十进制Morton码的解决方案。
摘要由CSDN通过智能技术生成
一、前言:
由《地理信息信息系统与原理》《地理信息系统基础》介绍,感觉有点意思,故想用C语言实现一下,顺便梳理相关内容。
前提知识:

叶节点:即没有子节点的节点。

线性四叉数只存储最后叶节点信息,包括叶节点的位置、深度和网格值。

地址码(Morton码):线性四叉树叶节点遵照一定的规则,隐含了叶节点位置信息的编号。

拓展:

3维空间xyz 的 32 位的莫顿码 编码方式zyxzyx, 每个维度用10bit 表示(0~1023)。

树的结点:包含一个数据元素及若干指向子树的分支;

孩子结点:结点的子树的根称为该结点的孩子;

双亲结点:B 结点是A 结点的孩子,则A结点是B 结点的双亲;

兄弟结点:同一双亲的孩子结点; 堂兄结点:同一层上结点;

祖先结点: 从根到该结点的所经分支上的所有结点子孙结点:以某结点为根的子树中任一结点都称为该结点的子孙

结点层:根结点的层定义为1;根的孩子为第二层结点,依此类推;

树的深度:树中最大的结点层

结点的度:结点子树的个数

树的度: 树中最大的结点度。

叶子节点:也叫终端结点,是度为 0 的结点;

分枝结点:度不为0的结点;

有序树:子树有序的树,如:家族树;

无序树:不考虑子树的顺序;

二、基本原理:
两种方法:

基于四进制Morton码的生成和四叉数的建立过程有两种不同方案

1.自上而下分裂的方式在建立四叉数的过程中逐步产生Morton码;

2.先计算每个格网的Morton码,然后按一定扫描方式自下而上合并建立四叉数。

自下而上与自上而下生成的四叉数一致,但前者的效率更高

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值