from operator import add, sub, mul
defdiv(x, y):# 使用整数除法的向零取整方式returnint(x / y)if x * y >0else-(abs(x)//abs(y))classSolution(object):
op_map ={'+': add,'-': sub,'*': mul,'/': div}defevalRPN(self, tokens: List[str])->int:
stack =[]for token in tokens:if token notin{'+','-','*','/'}:
stack.append(int(token))else:
op2 = stack.pop()
op1 = stack.pop()
stack.append(self.op_map[token](op1, op2))# 第一个出来的在运算符后面return stack.pop()
239. 滑动窗口最大值
from collections import deque
classMyQueue:#单调队列(从大到小def__init__(self):
self.queue = deque()#这里需要使用deque实现单调队列,直接使用list会超时#每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。#同时pop之前判断队列当前是否为空。defpop(self, value):if self.queue and value == self.queue[0]:
self.queue.popleft()#list.pop()时间复杂度为O(n),这里需要使用collections.deque()#如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。#这样就保持了队列里的数值是单调从大到小的了。defpush(self, value):while self.queue and value > self.queue[-1]:
self.queue.pop()
self.queue.append(value)#查询当前队列里的最大值 直接返回队列前端也就是front就可以了。deffront(self):return self.queue[0]classSolution:defmaxSlidingWindow(self, nums: List[int], k:int)-> List[int]:
que = MyQueue()
result =[]for i inrange(k):#先将前k的元素放进队列
que.push(nums[i])
result.append(que.front())#result 记录前k的元素的最大值for i inrange(k,len(nums)):
que.pop(nums[i - k])#滑动窗口移除最前面元素
que.push(nums[i])#滑动窗口前加入最后面的元素
result.append(que.front())#记录对应的最大值return result
347.前 K 个高频元素
#时间复杂度:O(nlogk)#空间复杂度:O(n)import heapq
classSolution:deftopKFrequent(self, nums: List[int], k:int)-> List[int]:#要统计元素出现频率
map_ ={}#nums[i]:对应出现的次数for i inrange(len(nums)):
map_[nums[i]]= map_.get(nums[i],0)+1#对频率排序#定义一个小顶堆,大小为k
pri_que =[]#小顶堆#用固定大小为k的小顶堆,扫描所有频率的数值for key, freq in map_.items():
heapq.heappush(pri_que,(freq, key))iflen(pri_que)> k:#如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
heapq.heappop(pri_que)#找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组
result =[0]* k
for i inrange(k-1,-1,-1):
result[i]= heapq.heappop(pri_que)[1]return result