pytorch 手写数字识别模型

cnn网络

import torch
class CNN(torch.nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv =torch.nn.Sequential(
            # 用来实现2d卷积操作,h和w2个维度,当前图片的channel是1,输出是32,卷积核是5
            torch.nn.Conv2d(1, 32, kernel_size=5, padding=2),
            torch.nn.BatchNorm2d(32),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2)
        )
        #第一轮卷积之后的大小,输入尺寸是28*28,变为14*14*channel32,输出10是当前图片0-9的概率,所以是10维
        self.fc = torch.nn.Linear(14 * 14 * 32, 10)
    def forward(self, x):
        out = self.conv(x)
        out = out.view(out.size()[0], -1)
        out = self.fc(out)
        return out
import torch
import torchvision.datasets as dataset
import torchvision.transforms as transforms
import torch.utils.data as data_utils
from CNN import CNN

# data
train_data = dataset.MNIST(root="mnist",
                           train=True,
                           transform=transforms.ToTensor(),
                           download=True)

test_data = dataset.MNIST(root="mnist",
                          train=False,
                          transform=transforms.ToTensor(),
                          download=False)
# batchsize,分批提取batch_size=64,shuffle数据打乱
train_loader = data_utils.DataLoader(dataset=train_data,
                                     batch_size=64,
                                     shuffle=True)

test_loader = data_utils.DataLoader(dataset=test_data,
                                    batch_size=64,
                                    shuffle=True)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cnn = CNN()
cnn = cnn.to(device)
# loss

loss_func = torch.nn.CrossEntropyLoss()

# optimizer

optimizer = torch.optim.Adam(cnn.parameters(), lr=0.01)

# training
# 将所有的样本遍历完,对模型进行训练后,这一轮称为epoch
for epoch in range(10):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)

        outputs = cnn(images)
        loss = loss_func(outputs, labels)
        # 反向传播,完成对参数的优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    print("epoch is {}, ite is "
          "{}/{}, loss is {}".format(epoch + 1, i,
                                     len(train_data) // 64,
                                     loss.item()))
    # eval/test 计算在测试集的精度
    loss_test = 0
    accuracy = 0
    for i, (images, labels) in enumerate(test_loader):
        images = images.to(device)
        labels = labels.to(device)
        outputs = cnn(images)
        # [batchsize]
        # outputs = batchsize * cls_num
        loss_test += loss_func(outputs, labels)
        _, pred = outputs.max(1)
        # 判断是否相等计算准确率
        accuracy += (pred == labels).sum().item()

    accuracy = accuracy / len(test_data)
    loss_test = loss_test / (len(test_data) // 64)
    # 打印精度和损失
    print("epoch is {}, accuracy is {}, "
          "loss test is {}".format(epoch + 1,
                                   accuracy,
                                   loss_test.item()))

torch.save(cnn, "model/mnist_model.pkl")

验证模型

import torch
import torchvision.datasets as dataset
import torchvision.transforms as transforms
import torch.utils.data as data_utils
from CNN import CNN
#net

test_data = dataset.MNIST(root="mnist",
                          train=False,
                          transform=transforms.ToTensor(),
                          download=False)

test_loader = data_utils.DataLoader(dataset=test_data,
                                    batch_size=64,
                                    shuffle=True)

cnn = torch.load("model/mnist_model.pkl")
cnn = cnn.cuda()
#loss
#eval/test
loss_test = 0
accuracy = 0

import cv2


#pip install opencv-python -i http://mirrors.aliyun.com/pypi/simple/   --trusted-host mirrors.aliyun.com
for i, (images, labels) in enumerate(test_loader):
    images = images.cuda()
    labels = labels.cuda()
    outputs = cnn(images)
    _, pred = outputs.max(1)
    accuracy += (pred == labels).sum().item()

    images = images.cpu().numpy()
    labels = labels.cpu().numpy()
    pred = pred.cpu().numpy()
    #batchsize * 1 * 28 * 28

    for idx in range(images.shape[0]):
        im_data = images[idx]
        im_label = labels[idx]
        im_pred = pred[idx]
        im_data = im_data.transpose(1, 2, 0)
accuracy = accuracy / len(test_data)
print(accuracy)








  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
你好,以下是 PyTorch 手写数字识别的代码: ``` import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义超参数 input_size = 784 hidden_size = 100 num_classes = 10 num_epochs = 5 batch_size = 100 learning_rate = .001 # 加载 MNIST 数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 加载数据集 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义神经网络模型 class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNet, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out model = NeuralNet(input_size, hidden_size, num_classes) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 将图像数据展开成一维向量 images = images.reshape(-1, 28*28) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 打印训练信息 if (i+1) % 100 == : print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item())) # 测试模型 with torch.no_grad(): correct = total = for images, labels in test_loader: # 将图像数据展开成一维向量 images = images.reshape(-1, 28*28) # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size() correct += (predicted == labels).sum().item() print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) ``` 希望能对你有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Icarus_

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值