cnn网络
import torch
class CNN(torch.nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv =torch.nn.Sequential(
# 用来实现2d卷积操作,h和w2个维度,当前图片的channel是1,输出是32,卷积核是5
torch.nn.Conv2d(1, 32, kernel_size=5, padding=2),
torch.nn.BatchNorm2d(32),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2)
)
#第一轮卷积之后的大小,输入尺寸是28*28,变为14*14*channel32,输出10是当前图片0-9的概率,所以是10维
self.fc = torch.nn.Linear(14 * 14 * 32, 10)
def forward(self, x):
out = self.conv(x)
out = out.view(out.size()[0], -1)
out = self.fc(out)
return out
import torch
import torchvision.datasets as dataset
import torchvision.transforms as transforms
import torch.utils.data as data_utils
from CNN import CNN
# data
train_data = dataset.MNIST(root="mnist",
train=True,
transform=transforms.ToTensor(),
download=True)
test_data = dataset.MNIST(root="mnist",
train=False,
transform=transforms.ToTensor(),
download=False)
# batchsize,分批提取batch_size=64,shuffle数据打乱
train_loader = data_utils.DataLoader(dataset=train_data,
batch_size=64,
shuffle=True)
test_loader = data_utils.DataLoader(dataset=test_data,
batch_size=64,
shuffle=True)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cnn = CNN()
cnn = cnn.to(device)
# loss
loss_func = torch.nn.CrossEntropyLoss()
# optimizer
optimizer = torch.optim.Adam(cnn.parameters(), lr=0.01)
# training
# 将所有的样本遍历完,对模型进行训练后,这一轮称为epoch
for epoch in range(10):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
outputs = cnn(images)
loss = loss_func(outputs, labels)
# 反向传播,完成对参数的优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("epoch is {}, ite is "
"{}/{}, loss is {}".format(epoch + 1, i,
len(train_data) // 64,
loss.item()))
# eval/test 计算在测试集的精度
loss_test = 0
accuracy = 0
for i, (images, labels) in enumerate(test_loader):
images = images.to(device)
labels = labels.to(device)
outputs = cnn(images)
# [batchsize]
# outputs = batchsize * cls_num
loss_test += loss_func(outputs, labels)
_, pred = outputs.max(1)
# 判断是否相等计算准确率
accuracy += (pred == labels).sum().item()
accuracy = accuracy / len(test_data)
loss_test = loss_test / (len(test_data) // 64)
# 打印精度和损失
print("epoch is {}, accuracy is {}, "
"loss test is {}".format(epoch + 1,
accuracy,
loss_test.item()))
torch.save(cnn, "model/mnist_model.pkl")
验证模型
import torch
import torchvision.datasets as dataset
import torchvision.transforms as transforms
import torch.utils.data as data_utils
from CNN import CNN
#net
test_data = dataset.MNIST(root="mnist",
train=False,
transform=transforms.ToTensor(),
download=False)
test_loader = data_utils.DataLoader(dataset=test_data,
batch_size=64,
shuffle=True)
cnn = torch.load("model/mnist_model.pkl")
cnn = cnn.cuda()
#loss
#eval/test
loss_test = 0
accuracy = 0
import cv2
#pip install opencv-python -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
for i, (images, labels) in enumerate(test_loader):
images = images.cuda()
labels = labels.cuda()
outputs = cnn(images)
_, pred = outputs.max(1)
accuracy += (pred == labels).sum().item()
images = images.cpu().numpy()
labels = labels.cpu().numpy()
pred = pred.cpu().numpy()
#batchsize * 1 * 28 * 28
for idx in range(images.shape[0]):
im_data = images[idx]
im_label = labels[idx]
im_pred = pred[idx]
im_data = im_data.transpose(1, 2, 0)
accuracy = accuracy / len(test_data)
print(accuracy)