计算机视觉在人工智能领域扮演着重要的角色,而检测器是其中一个关键组件。为了提高检测器的精度和效率,我们可以采用高效金字塔网络架构。本文将详细介绍如何构建这样一个网络架构,并提供相应的源代码实现。
金字塔网络架构是一种多尺度处理的方法,能够在不同的图像尺度上对目标进行检测。它通过在不同层次的特征图中进行检测,从而能够检测到不同尺度的目标。下面是一个简化的金字塔网络架构示意图:
import torch
import torch.nn as nn
class PyramidNetwork(nn.Module):
def __init__(self):
super(PyramidNetwork, self).__init__()
self.feature_extractor = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 2