zoj 1975

 

 

The Sierpinski Fractal


Time Limit: 1 Second      Memory Limit: 32768 KB


Consider a regular triangular area, divide it into four equal triangles of half height and remove the one in the middle. Apply the same operation recursively to each of the three remaining triangles. If we repeated this procedure infinite times, we'd obtain something with an area of zero. The fractal that evolves this way is called the Sierpinski Triangle. Although its topological dimension is 2, its Hausdorff-Besicovitch dimension is log(3)/log(2)~1.58, a fractional value (that's why it is called a fractal). By the way, the Hausdorff-Besicovitch dimension of the Norwegian coast is approximately 1.52, its topological dimension being 1.

For this problem, you are to outline the Sierpinski Triangle up to a certain recursion depth, using just ASCII characters. Since the drawing resolution is thus fixed, you'll need to grow the picture appropriately. Draw the smallest triangle (that is not divided any further) with two slashes, to backslashes and two underscores like this:

 //
/__/

To see how to draw larger triangles, take a look at the sample output.


Input

The input contains several testcases. Each is specified by an integer n. Input is terminated by n=0. Otherwise 1<=n<=10 indicates the recursion depth.


Output

For each test case draw an outline of the Sierpinski Triangle with a side's total length of 2n characters. Align your output to the left, that is, print the bottom leftmost slash into the first column. The output must not contain any trailing blanks. Print an empty line after each test case. (what?)


Sample Input

3
2
1
0


Sample Output

       //
      /__/
     //  //
    /__//__/
   //      //
  /__/    /__/
 //  //  //  //
/__//__//__//__/

   //
  /__/
 //  //
/__//__/

 //
/__/

 

始终还是PF,不知道不能连续输出空格是怎么样一回事呢?

 

 速度上去了,但是还是pf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值