T7打卡-学习笔记

前期准备

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

gpus
[]
from tensorflow       import keras
from tensorflow.keras import layers,models
import numpy             as np
import matplotlib.pyplot as plt
import os,PIL,pathlib

data_dir = r"C:\Users\11054\Desktop\kLearning\t7_learning\data"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.png')))

print("图片总数为:",image_count)
图片总数为: 1200

数据预处理

batch_size = 32
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

class_names = train_ds.class_names
print(class_names)


Found 1200 files belonging to 4 classes.
Using 960 files for training.
Found 1200 files belonging to 4 classes.
Using 240 files for validation.
['Dark', 'Green', 'Light', 'Medium']

可视化数据

plt.figure(figsize=(10, 4))  # 图形的宽为10高为5

for images, labels in train_ds.take(1):
    for i in range(10):

        ax = plt.subplot(2, 5, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])

        plt.axis("off")

在这里插入图片描述

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(32, 224, 224, 3)
(32,)

配置数据集

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

normalization_layer = layers.Rescaling(1./255)

train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds   = val_ds.map(lambda x, y: (normalization_layer(x), y))

image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]

# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))


0.0 1.0

构建VGG-16网络

model = tf.keras.applications.VGG16(weights='imagenet')

# from tensorflow.keras import layers, models, Input
# from tensorflow.keras.models import Model
# from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
#
# def VGG16(nb_classes, input_shape):
#     input_tensor = Input(shape=input_shape)
#     # 1st block
#     x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
#     x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
#     x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
#     # 2nd block
#     x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
#     x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
#     x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
#     # 3rd block
#     x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
#     x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
#     x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
#     x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
#     # 4th block
#     x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
#     x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
#     x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
#     x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
#     # 5th block
#     x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
#     x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
#     x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
#     x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
#     # full connection
#     x = Flatten()(x)
#     x = Dense(4096, activation='relu',  name='fc1')(x)
#     x = Dense(4096, activation='relu', name='fc2')(x)
#     output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)
#
#     model = Model(input_tensor, output_tensor)
#     return model
#
# model=VGG16(len(class_names), (img_width, img_height, 3))
# model.summary()
<Functional name=vgg16, built=True>

网络结构图

在这里插入图片描述
在这里插入图片描述

编译

# 设置初始学习率
initial_learning_rate = 1e-4

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate,
        decay_steps=30,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

训练模型

epochs = 20

history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)
Epoch 1/20


C:\Users\11054\.conda\envs\py311\Lib\site-packages\keras\src\backend\tensorflow\nn.py:602: UserWarning: "`sparse_categorical_crossentropy` received `from_logits=True`, but the `output` argument was produced by a Softmax activation and thus does not represent logits. Was this intended?
  output, from_logits = _get_logits(


[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m311s[0m 10s/step - accuracy: 0.2452 - loss: 2.3790 - val_accuracy: 0.4708 - val_loss: 1.1447
Epoch 2/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m322s[0m 10s/step - accuracy: 0.5306 - loss: 0.9733 - val_accuracy: 0.8000 - val_loss: 0.6850
Epoch 3/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m305s[0m 10s/step - accuracy: 0.8199 - loss: 0.4469 - val_accuracy: 0.8792 - val_loss: 0.3026
Epoch 4/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m305s[0m 10s/step - accuracy: 0.9060 - loss: 0.2226 - val_accuracy: 0.9125 - val_loss: 0.2860
Epoch 5/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m305s[0m 10s/step - accuracy: 0.9341 - loss: 0.1610 - val_accuracy: 0.8417 - val_loss: 0.4898
Epoch 6/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m305s[0m 10s/step - accuracy: 0.9024 - loss: 0.2810 - val_accuracy: 0.9333 - val_loss: 0.1948
Epoch 7/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m323s[0m 10s/step - accuracy: 0.9804 - loss: 0.0554 - val_accuracy: 0.9625 - val_loss: 0.1087
Epoch 8/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m305s[0m 10s/step - accuracy: 0.9862 - loss: 0.0477 - val_accuracy: 0.9875 - val_loss: 0.0366
Epoch 9/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m307s[0m 10s/step - accuracy: 0.9967 - loss: 0.0159 - val_accuracy: 0.9958 - val_loss: 0.0105
Epoch 10/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m321s[0m 10s/step - accuracy: 0.9995 - loss: 0.0034 - val_accuracy: 0.9958 - val_loss: 0.0112
Epoch 11/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m304s[0m 10s/step - accuracy: 1.0000 - loss: 9.6800e-04 - val_accuracy: 0.9958 - val_loss: 0.0102
Epoch 12/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m323s[0m 10s/step - accuracy: 1.0000 - loss: 2.3597e-04 - val_accuracy: 0.9958 - val_loss: 0.0092
Epoch 13/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m306s[0m 10s/step - accuracy: 1.0000 - loss: 1.6429e-04 - val_accuracy: 0.9958 - val_loss: 0.0114
Epoch 14/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m305s[0m 10s/step - accuracy: 1.0000 - loss: 1.2267e-04 - val_accuracy: 0.9917 - val_loss: 0.0120
Epoch 15/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m304s[0m 10s/step - accuracy: 1.0000 - loss: 5.3608e-05 - val_accuracy: 0.9958 - val_loss: 0.0130
Epoch 16/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m305s[0m 10s/step - accuracy: 1.0000 - loss: 2.8213e-05 - val_accuracy: 0.9917 - val_loss: 0.0137
Epoch 17/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m308s[0m 10s/step - accuracy: 1.0000 - loss: 1.5108e-05 - val_accuracy: 0.9917 - val_loss: 0.0146
Epoch 18/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m320s[0m 10s/step - accuracy: 1.0000 - loss: 1.2032e-05 - val_accuracy: 0.9958 - val_loss: 0.0145
Epoch 19/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m308s[0m 10s/step - accuracy: 1.0000 - loss: 1.0658e-05 - val_accuracy: 0.9958 - val_loss: 0.0153
Epoch 20/20
[1m30/30[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m308s[0m 10s/step - accuracy: 1.0000 - loss: 7.8087e-06 - val_accuracy: 0.9958 - val_loss: 0.0147
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

#个人总结

  • 掌握了VGG16 TensorFlow的调用
  • 9
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值