数论杂谈

数论(小部分前置芝士)

  • 数论的定义:

    数论是专门研究整数的性质的数学分支,其中大部分研究的是正整数。

    数论对信息学有很大作用也是考试恶心人的利器

    • 各类定义:

      • 定理:符合某些条件的语句。一般的定理需要证明。

        • 公理:公认正确的连续性定理,不需要证明。
      • 复数(Complex Number)可以表示的数,包含实数和虚数

        • 实数(Real Number) :可以用数轴表示的数,也可以写成数字(有些实数带符号,比如符号,分数线和根号)的形式

          • 实数包含有理数和无理数

          • 任意一个实数的偶数次幂都 > 0 >0 >0

          • 有理数(Rational Number) :可分类成整数和分数。

            • 整数(Integer) :类似 0 , − 1 , 1 , − 2 , 2 0,-1,1,-2,2 0,1,1,2,2这样的数。

              • 整数是数学上的基本概念,所以没有定义。

              • 整数包含正整数(Positive Integer),负整数(Negative Integer)和 0 0 0 (Zero)

            • 分数(Fraction):即无限循环小数和有限小数的总称。分数是有理数中除了整数外的一切数

              • 分数也分为正分数(Positive Fraction)和负分数(Negative Fraction)。
            • 有理数的封闭性:任意有理数作运算都得到一个有理数

        • 无理数(Quational Number) :无限不循环小数。

          • 无理数也分正负,这里就不细说。

          • 无理数作加减乘除的运算,都可以得到一个多项式

          • 同类无理数之间可以加减任意无理数之间可以乘除

        • 任意实数之间可以作运算

        • 虚数(Imagine Number)不能用数轴表示的数,是不切实际的。

          • 任意一个虚数的平方 − 1 -1 1

          • 虚数可以用复平面表示。复平面就像一个平面直角坐标系。坐标系中的x轴成为实数轴,y轴成为虚数轴(虚数系数轴)

          • 虚数可以写成字母形式,例如 i , j i,j i,j

          • 任意一个虚数都可以表示成 a + b i a+bi a+bi的形式,其中 a , b a,b a,b有理数

          • 在复平面中, a + b i a+bi a+bi的位置在 ( a , b ) (a,b) (a,b),原点和 a + b i a+bi a+bi所在点的连线与x轴的夹角成为辐角

          • 如果两个虚数的积为实数则称这两个虚数共轭。其中任意一个虚数为另一个虚数的共轭复数

  • 集合:

    • 集合是数学上的基本概念,所以集合没有定义。

    • 集合的每一个单独的量成为该集合的元素。

    • 集合的一些量组成的集合成为该集合的子集。

    • 集合常用符号:

      ∅ \emptyset ∅ \varnothing 空集 没有元素的集合。

      ∈ \in 属于 表示一个数属于某个集合。

      ∉ \notin / 不属于 表示一个数不属于某个集合。

      例子: S = { 1 , 2 , 3 , 4 , 5 } S=\{1,2,3,4,5\} S={1,2,3,4,5},则 1 ∈ S , 6 ∉ S 1\in S,6\notin S 1S,6/S

      ⊆ \subseteq 包含于 表示一个集合是另一个集合的子集。

      ⊈ \nsubseteq 不包含于 表示一个集合不是另一个集合的子集。

      例子: S 1 = { 1 , 2 , 3 , 4 , 5 } , S 2 = { 2 , 3 , 4 } , S 3 = { 5 , 6 , 7 } S_1=\{1,2,3,4,5\},S_2=\{2,3,4\},S_3=\{5,6,7\} S1={1,2,3,4,5},S2={2,3,4},S3={5,6,7},则 S 2 ⊆ S 1 , S 3 ⊈ S 1 S_2\subseteq S_1,S_3\nsubseteq S_1 S2S1,S3S1

      ∩ \cap 表示两个集合的共同部分。

      ∪ \cup 表示两个集合的共同部分和两个集合的单独部分。

      例子: S 1 = { 1 , 2 , 3 , 4 } , S 2 = { 2 , 3 , 4 , 5 } , S 3 = { 5 , 6 , 7 } , S 4 = ∅ S_1=\{1,2,3,4\},S_2=\{2,3,4,5\},S_3=\{5,6,7\},S_4=\varnothing S1={1,2,3,4},S2={2,3,4,5},S3={5,6,7},S4=

      则有下列公式:

      S 2 ∩ S 1 = { 2 , 3 , 4 } \boxed{S_2\cap S_1=\{2,3,4\}} S2S1={2,3,4}

      S 2 ∪ S 1 = { 1 , 2 , 3 , 4 , 5 } \boxed{S_2\cup S1=\{1,2,3,4,5\}} S2S1={1,2,3,4,5}

      S 1 ∩ S 3 = ∅ \boxed{S_1\cap S_3=\varnothing} S1S3=

      S 1 ∪ S 3 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } \boxed{S_1\cup S_3=\{1,2,3,4,5,6,7\}} S1S3={1,2,3,4,5,6,7}

      S 1 ∩ S 4 = ∅ \boxed{S_1\cap S_4=\varnothing} S1S4=

      S 1 ∪ S 4 = S 1 \boxed{S_1\cup S_4=S_1} S1S4=S1

      • 集合的公理:

        • 集合的每个元素都具有互异性。
    • 通用集合:

      N N N 自然数集(意思是这个集合包含所有的自然数。下方的意思均与该项类似)

      N + N^+ N+ 正整数集

      Z Z Z 整数集

      Z + Z^+ Z+ 正整数集

      Q Q Q 有理数集

      R R R 实数集

  • 整除

    • 前置芝士: m , n ∈ Z m,n \in Z m,nZ n > 0 n>0 n>0,则 ∃ q , r \exists q,r q,r 0 ≤ r < n 0 \le r < n 0r<n 使得 m = q n + r m=qn+r m=qn+r
     此处不予证明,因为这是句废话,而且需要很长的篇幅来证明。
    
    • 对于 m , n ∈ Z m,n \in Z m,nZ m ≠ 0 m \ne 0 m=0,若 n = c m , c ∈ Z n=cm,c\in Z n=cm,cZ,则称 m m m整除 n n n。记作: m ∣ n m\mid n mn

      • 注意: m ∣ n m|n mn指的是 n m \displaystyle\frac{n}{m} mn为整数,即 n = c m , c ∈ Z n=cm,c\in Z n=cm,cZ.
    • 一些引理:

      • n ∈ Z n\in Z nZ 则有 1 ∣ n 1\mid n 1n

      • m ≠ 0 m\ne0 m=0 m ∣ 0 m\mid 0 m0

      • m ∣ n , n ∣ q m\mid n,n\mid q mn,nq m ∣ q m\mid q mq

      • m ∣ 1 m\mid 1 m1 m = 1 m=1 m=1 − 1 -1 1

      • m ∣ n , n ∣ m m\mid n,n\mid m mn,nm m = ± n m=\pm n m=±n

  • gcd(最大公因数):

    • 任意两个数只有唯一一个最大公因数。

    • 最大公因数定义:

      • a , b a,b a,b a , b a,b a,b不全为 0 0 0

        有 c ∈ Z 满足: 有c\in Z满足: cZ满足:

        c ∣ a , c ∣ b c\mid a,c\mid b ca,cb

        ∃   d ∣ a \exists\,d\mid a da d ∣ b d\mid b db d ∣ c d\mid c dc

公因数:指两个数都有的因数

例如 8 的因数为 1,2,4,8,6 的因数为 1,2,3,6,则 8 和 6 的公因数为 1,2

最大公因数:指两个数的公因数中的最大数。

上面的例子中,6 和 8 的最大公因数为 2,记作gcd(6,8)=2


组合

Chapter I 卡特兰数

典型模型:

有一家电影院票价5美刀。
有2n个客人。
其中n个客人有5美刀。
另外n个客人有10美刀。
做生意需要找零钱,所以当客人付出10美刀时,你需要找零5美刀。
问题在于,你一开始没有钱。所以你需要在自己足够的有5美刀钱币时才能收10美刀钱币。
求你能成功找零的情况下,客人来的顺序的方案数。

答案: h n h_n hn

解析:

创建一个n*n的矩阵。现在我们在矩阵的(1,1)处。
如图:

n=5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

假设收一个5美刀钱的人等价于向下走一步。
收一个10美刀钱的人等价于向右走一步。
则问题转化为:保证当前位置不在主对角线(左上->右下)上方(可以在线上)。
如图,* 为可走区域:

n=5
* 0 0 0 0
* * 0 0 0
* * * 0 0
* * * * 0
* * * * *

公式:

  • h i = ∑ i = 0 n − 1 h i × h n − i − 1 h_i=\displaystyle\sum\limits_{i=0}^{n-1} h_i\times h_{n-i-1} hi=i=0n1hi×hni1

  • h n = C 2 n n n + 1 h_n=\displaystyle\frac{C^n_{2n}}{n+1} hn=n+1C2nn

  • h n = C 2 n n − C 2 n n − 1 h_n=C_{2n}^n-C_{2n}^{n-1} hn=C2nnC2nn1

  • h n = h n − 1 × ( 4 n − 2 ) / ( n + 1 ) h_n=h_{n-1}\times(4n-2) /(n+1) hn=hn1×(4n2)/(n+1)

Chapter II 斯特林数

  • 第一类

    • n n n个不同元素组成 m m m个环排列

      递推公式: S 1 n , m = S 1 n − 1 , m − 1 + S 1 n − 1 , m × ( n − 1 ) S_{1_{n,m}}=S_{1_{n-1,m-1}}+S_{1_{n-1,m}}\times (n-1) S1n,m=S1n1,m1+S1n1,m×(n1)

    • 第一类斯特林数很难想出来

  • 第二类

    • n n n个不同的球放入 m m m个相同的盒子,盒子不定

      递推公式: S 2 n , m = S 2 n − 1 , m − 1 + S 2 n − 1 , m × m S_{2_{n,m}}=S_{2_{n-1,m-1}}+S_{2_{n-1,m}}\times m S2n,m=S2n1,m1+S2n1,m×m

    -第二类斯特林数相对第一类而言,较为简单,但是还是

斯特林数行列的模板都是黑题

数论没一个简单的东西,全寄吧是废人的题

Chapter III Lucas定理

前置芝士: C n m C_n^m Cnm可以表示为 ( n m ) \begin{pmatrix}n\\m\end{pmatrix} (nm)

然后你就可以这样祖安他人了。正确的

一个质数 p p p,如果 n = s p + q n=sp+q n=sp+q m = t p + r m=tp+r m=tp+r

( n m ) ≡ ( s t ) ( q r ) ( m o d p ) \begin{pmatrix}n\\m\end{pmatrix}\equiv\begin{pmatrix}s\\t\end{pmatrix}\begin{pmatrix}q\\r\end{pmatrix}\pmod{p} (nm)(st)(qr)(modp)

引理:
  1. p为质数时, ( p q ) ≡ 0 ( m o d p ) \begin{pmatrix}p\\q\end{pmatrix}\equiv0\pmod{p} (pq)0(modp)

  2. 多项式 f ( x ) = ∑ i = 0 N a i x i \displaystyle f(x)=\sum\limits_{i=0}^{N}a_ix_i f(x)=i=0Naixi g ( x ) = ∑ i = 0 M b i x i g(x)=\sum\limits_{i=0}^{M}b_ix_i g(x)=i=0Mbixi

  3. ( 1 + x ) n = ∑ i = 0 n C n i x i (1+x)^n=\displaystyle \sum\limits_{i=0}^{n}C_n^ix^i (1+x)n=i=0nCnixi

Chapter IV 欧拉函数和素数函数

素数函数: π ( n ) \pi(n) π(n) 表示 n n n内质数的个数。

欧拉函数: φ ( n ) \varphi(n) φ(n) 表示 n n n内和 n n n互质的数的个数。

  • 欧拉函数计算公式 φ ( m ) = m ∏ p ∣ m ( 1 − 1 p ) \varphi(m)=m\displaystyle\prod\limits_{p\mid m}(1-\frac{1}{p}) φ(m)=mpm(1p1)

  • 欧拉函数的性质:

    • p p p是质数,则 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1

    • ∀ m ∈ N + \forall m \in N^+ mN+,有 ∑ d ∣ m φ ( d ) = ∑ d ∣ m φ ( m d ) = m \displaystyle\sum\limits_{d\mid m}\varphi(d)=\sum\limits_{d\mid m}\varphi(\frac{m}{d})=m dmφ(d)=dmφ(dm)=m

      • 证明:

      • ∀ d ∣ m \forall d\mid m dm 1 ≤ a ≤ m 1\le a \le m 1am,设 ( a , m ) = d (a,m)=d (a,m)=d,则 ( a d , m d ) = 1 (\displaystyle\frac{a}{d},\frac{m}{d})=1 (da,dm)=1,则 ( a , m ) = d (a,m)=d (a,m)=d φ ( d ) \varphi(d) φ(d)种取法。则 ∑ d ∣ m φ ( m d ) = m \displaystyle\sum\limits_{d\mid m}\varphi(\frac{m}{d})=m dmφ(dm)=m

    • a φ ( m ) ≡ 1 ( m o d m ) a^{\varphi(m)}\equiv1\pmod{m} aφ(m)1(modm) ( a , m ) = 1 (a,m)=1 (a,m)=1时。

Chapter V 素数筛法

筛法时间复杂度原理
埃氏筛 O ( N l n l n N ) O(NlnlnN) O(NlnlnN)筛选到一个质数,把这个质数的所有 ≤ n \le n n的倍数全都筛掉
欧拉筛较快, O ( N ) O(N) O(N)对于每一个数,被其最小质数因子筛去

不提供证明,因为作者不会微只因分


又是数论

Chapter I 一些函数

  • 质数函数 π ( m ) \pi(m) π(m) 表示 ≤ m \le m m 的正整数中的质数个数。

  • 欧拉函数 φ ( m ) \varphi(m) φ(m) 表示 1 1 1~ m m m 中和 m m m 互质的数。

    • m ∈ Z + m \in Z^+ mZ+ φ ( m ) \varphi(m) φ(m) 表示 { 1 , 2 , … , m − 1 } \{1,2,\dots,m-1\} {1,2,,m1} 中和 m m m 互质的元素的个数。
  • 莫比乌斯函数 μ ( m ) = { 0 m h a v e P 2 1 m = 1 ( − 1 ) k m = p 1 p 2 … p k \mu (m)=\begin{cases}0&m_{have}P^2\\1&m=1\\(-1)^k&m=p_1p_2\dots p_k\end{cases} μ(m)= 01(1)kmhaveP2m=1m=p1p2pk

PS: m h a v e P 2 m_{have}P^2 mhaveP2表示m的因子中含有P的平方


Chapter II 简化剩余系

{ x ∣ ≡ k ( m o d m ) , k ∈ { 1 , 2 , … , m − 1 } & ( k , m ) = 1 } \{x |\equiv k\pmod{m},k \in \{1,2,\dots,m-1\}\& (k,m)=1\} {xk(modm),k{1,2,,m1}&(k,m)=1}

人话: φ ( m ) \varphi(m) φ(m) 个整数组成,且每个元素与m互质,且任意两个元素 ( m o d m ) \pmod{m} (modm) 不同余。


Chapter III 拓展芝士:群的定义

本质是一个集合在该集合上定义运算 × \times ×(乘法)且该集合在这两种运算满足:

  1. × \times × 封闭:

    • a , b ∈ S , a × b ∈ S a,b\in S,a\times b\in S a,bS,a×bS
  2. a ( b c ) = ( a b ) c a(bc)=(ab)c a(bc)=(ab)c

  3. ∃ \exists 单位元 e ∈ S e\in S eS,有 a − 1 a^{-1} a1 满足 a × a − 1 = e a\times a^{-1}=e a×a1=e

  4. ∀ a ∈ S \forall a\in S aS,有 a − 1 a^{-1} a1满足 a × a − 1 = a − 1 × a = e a\times a^{-1}=a^{-1}\times a=e a×a1=a1×a=e

  • 如果满足上述条件,则称 S S S
举个栗子
  1. 非零实数集,关于普通乘法

  2. { 1 } \{1\} {1},关于普通乘法。

    • 类似于 { 1 } \{1\} {1}这样的一个元素的集合成为平凡群

      真 平 凡 啊

  3. 有理数集(去除0),关于普通乘法

  4. Z Z Z,关于普通加法

    • e = 0 e=0 e=0

    • a − 1 = − a a^{-1}=-a a1=a

  5. n阶可逆阵,对于矩阵乘法。

  6. R R R

    • + + + 作成群

    • × \times × 不作成群

Chapter IV 乘法函数

前置芝士:算术函数

  • 算术函数是指定义在所有正整数上的函数。

如果算术函数 f f f 满足 f ( m n ) = f ( m ) f ( n ) f(mn)=f(m)f(n) f(mn)=f(m)f(n)

则称 f f f为乘法函数。

注意: ( m , n ) (m,n) (m,n)=1

如果 f f f任意 m , n ∈ Z + m,n\in Z^+ m,nZ+,有 f ( m , n ) = f ( m ) f ( n ) f(m,n)=f(m)f(n) f(m,n)=f(m)f(n),则称 f f f完全乘法函数

  • φ \varphi φ 是乘法函数
一些定理
  • f f f为乘法函数且 n = p 1 a 1 … p s a s n=p_1^{a_1}\dots p_s^{a_s} n=p1a1psas n n n素数分解,则 f ( n ) = ∏ i = 1 s p i a i f(n)=\displaystyle\prod\limits_{i=1}^{s}p_i^{a_i} f(n)=i=1spiai

  • p p p为素数, a ∈ Z + a\in Z^+ aZ+,则: φ ( p a ) = p q − p a − 1 \varphi(p^a)=p^q-p^{a-1} φ(pa)=pqpa1

  • 由于 φ \varphi φ 是乘法函数,则 φ ( n m ) = φ ( n ) × φ ( m ) \varphi(nm)=\varphi(n)\times\varphi(m) φ(nm)=φ(n)×φ(m)

证明:

[ 1 m + 1 2 m + 1 … ( n − 1 ) m + 1 2 m + 2 2 m + 2 … ( n − 1 ) m + 2 3 m + 3 2 m + 3 … 3 ( n − 1 ) m + 3 … … … … … m 2 m 3 m … n m φ ( m ) φ ( n m ) ] \begin{bmatrix}1&m+1&2m+1&\dots&(n-1)m+1\\2&m+2&2m+2&\dots&(n-1)m+2\\3&m+3&2m+3&\dots3&(n-1)m+3\\\dots&\dots&\dots&\dots&\dots\\m&2m&3m&\dots&nm\\\varphi(m)&&&&\varphi(nm)\end{bmatrix} 123mφ(m)m+1m+2m+32m2m+12m+22m+33m3(n1)m+1(n1)m+2(n1)m+3nmφ(nm)

看图心自知其实作者忘了怎么证明了

Chapter V 中国剩余定理

举个经典的例子:

lty2000 have a number but I don't know it.
Three three count it mod equal one.
Five five count it mod equal three.
Seven seven count it mod equal five.
Question:what's the number?

人话:求 { x ≡ 1 ( m o d 3 ) x ≡ 3 ( m o d 5 ) x ≡ 5 ( m o d 7 ) \begin{cases}x\equiv 1\pmod{3}\\x\equiv 3\pmod{5}\\x\equiv 5\pmod{7}\end{cases} x1(mod3)x3(mod5)x5(mod7)的解

Chapter VI Pollard算法基本介绍(没码)

泼腊肉!恶臭恶俗的泼腊肉!

算法用于:对于 n n n,找 n n n的因数
适用数据范围:n很大,且素因数 p p p很大。

引理:
a , b ∈ Z + a,b\in Z^+ a,bZ+,则 2 a − 1 ( m o d 2 b − 1 ) 2^a-1\pmod{2^b-1} 2a1(mod2b1)的最小正余数为 2 r − 1 2^r-1 2r1 r r r a m o d    b a\mod b amodb的最小正余数

r ( A ) = r(A)= r(A)=阶梯形中主元的个数

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值