线性代数学习笔记7-5:复习——正交、投影、特征值、差分/微分方程

内容回顾

投影与正交

  1. 向量到子空间的投影
    用于在方程Ax=b无解时,将b向量投影到A的列空间中,求“最优解”,对应最小二乘法LS
  2. Gram-Schmidt正交化
    希望从一组基得到标准正交基,方法是先固定一个基向量,从另一基向量中减去其对已固定的正交基向量的投影,得到的新向量就和已固定的基向量正交,以此类推…最终得到一组正交基向量(最后要除以长度,实现标准化)
  3. 正交矩阵 Q \mathbf Q Q:就是列向量为一组标准正交基的矩阵
    满足 Q T Q = I \mathbf Q^T\mathbf Q=I QTQ=I
    (理解:其中 Q \mathbf Q Q的各个列向量标准正交,从而有 q i T q i = 1 \mathbf q_i^T \mathbf q_i=1 qiTqi=1 q i T q j = 0 ( i ≠ j ) \mathbf q_i^T \mathbf q_j=0(i\neq j) qiTqj=0(i=j)

行列式 d e t ( A ) det(\mathbf A) det(A)

  1. 三个基本性质定义了行列式,其余性质可由它们推导
  2. 通过性质的推导,计算行列式可以分解 n ! n! n!个「只有n个非零元素,且每行/每列都有非零元素」的行列式,也可以用推论得出的代数余子式计算: det ⁡ ( A ) = a 11 C 11 + a 12 C 12 + ⋯ + a 1 n C 1 n \operatorname{det}(\boldsymbol{A})=a_{11} \mathrm{C}_{11}+a_{12} \mathrm{C}_{12}+\cdots+a_{1 \mathrm{n}} \mathrm{C}_{1 \mathrm{n}} det(A)=a11C11+a12C12++a1nC1n
  3. 可以计算行列式后,进一步得到逆矩阵的公式 A − 1 = A ∗ ∣ A ∣ \mathbf A^{-1}=\frac{\mathbf A^*}{|\mathbf A|} A1=AA,并得到方程的克莱姆法则

特征值和特征向量

  1. 求特征值和特征向量的通用方法: d e t ( A − λ I ) = 0 det(\mathbf A - \lambda\mathbf I)=0 det(AλI)=0解得 λ \lambda λ后求特征向量
  2. 若有n个无关的特征向量,则可实施对角化 A = S Λ S − 1 \boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1} A=SΛS1
    由此可以简便的计算矩阵的幂: A k = ( S Λ S − 1 ) k = S Λ k S − 1 \boldsymbol{A}^{k}=\left(\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}\right)^{k}=\boldsymbol{S} \boldsymbol{\Lambda}^{k} \boldsymbol{S}^{-1} Ak=(SΛS1)k=SΛkS1
  3. A \mathbf A A为对称矩阵,后面还将知道,对角化得到正交矩阵 A = Q Λ Q − 1 = Q Λ Q T \boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{-1}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T} A=QΛQ1=QΛQT
    原因:对称矩阵的特征向量正交,而正交矩阵满足 Q − 1 = Q T \boldsymbol{Q}^{-1}=\boldsymbol{Q}^T Q1=QT

例题

Eg1. 投影

对于 a = [ 2 1 2 ] \mathbf{a}=\left[\begin{array}{l}2 \\1 \\2\end{array}\right] a= 212 ,求将任意向量投影到 a \mathbf{a} a所处直线的投影矩阵 P \boldsymbol{P} P

  • 根据 P = A ( A T A ) − 1 A T \boldsymbol{P}=\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} P=A(ATA)1AT可得: P = a a T a T a = 1 9 [ 4 2 4 2 1 2 4 2 4 ] \boldsymbol{P}=\frac{\mathbf{a} a^{T}}{\mathbf{a}^{T} \mathbf{a}}=\frac{1}{9}\left[\begin{array}{lll} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{array}\right] P=aTaaaT=91 424212424

对于投影矩阵 P \boldsymbol{P} P,求列空间、秩、特征值和特征向量

  • 由于是投影到 a \mathbf{a} a所处直线的投影矩阵, P \boldsymbol{P} P的列空间就是 a \mathbf{a} a所处直线,进而 R a n k ( P ) = 1 Rank(\boldsymbol{P})=1 Rank(P)=1
  • 由于是投影到直线, P \boldsymbol{P} P必然对应降维的线性变换,从而必然有特征值 λ = 0 \lambda=0 λ=0,并且为二重特征值(从三维到一维);
    另一方面, t r a c e ( P ) = trace(\boldsymbol{P})= trace(P)=特征值之和=对角元之和=1,得到所有三个特征值 λ 1 = 0 , λ 2 = 0 , λ 3 = 1 \lambda_1=0,\lambda_2=0,\lambda_3=1 λ1=0,λ2=0,λ3=1
  • 由于是投影矩阵 P \boldsymbol{P} P,特征值 λ 3 = 1 \lambda_3=1 λ3=1对应的特征向量,就是 a = [ 2 1 2 ] \mathbf{a}=\left[\begin{array}{l}2 \\1 \\2\end{array}\right] a= 212 (投影后 P a = a \boldsymbol{P}\mathbf{a}=\mathbf{a} Pa=a

Eg1-2 差分方程

(接上一题)对于方程 u k + 1 = P u k \mathbf{u}_{k+1}=\boldsymbol{P} \mathbf{u}_{k} uk+1=Puk,(初值 u 0 = [ 9 9 0 ] \mathbf{u} 0=\left[\begin{array}{l}9 \\9 \\0\end{array}\right] u0= 990 ),求 u k \mathbf{u}_{k} uk

  • 解法1:由于是投影矩阵,无论投影多少次,都等效于只投影一次,即 P k u 0 = P u 0 \boldsymbol{P}^{k} \mathbf{u}_{0}=\boldsymbol{P} \mathbf{u}_{0} Pku0=Pu0,故 u k + 1 = P k u 0 = P u 0 = [ 6 3 6 ] \mathbf{u}_{k+1}=\boldsymbol{P}^{k} \mathbf{u}_{0}=\boldsymbol{P} \mathbf{u}_{0} =\left[\begin{array}{l}6 \\3 \\6\end{array}\right] uk+1=Pku0=Pu0= 636
  • 通用解法:对于一般的 u k + 1 = A u k \mathbf{u}_{k+1}=\boldsymbol{A} \mathbf{u}_{k} uk+1=Auk问题,思路是将初值 u 0 \mathbf{u}_{0} u0拆为特征向量的线性组合(矩阵幂后,只是对特征向量的多次缩放),即 u 0 = c 1 x 1 + c 2 x 2 + c 3 x 3 \mathbf{u}_{0}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+c_{3} \mathbf{x}_{3} u0=c1x1+c2x2+c3x3
    那么最终的解就是 u k = c 1 λ 1 k x 1 + c 2 λ 2 k x 2 + c 3 λ 3 k x 3 \mathbf{u}_{k}=c_{1} \lambda_{1}{ }^{k} \mathbf{x}_{1}+c_{2} \lambda_{2}{ }^{k} \mathbf{x}_{2}+c_{3} \lambda_{3}{ }^{k} \mathbf{x}_{3} uk=c1λ1kx1+c2λ2kx2+c3λ3kx3
    而本例中 λ 1 = 0 , λ 2 = 0 , λ 3 = 1 \lambda_1=0,\lambda_2=0,\lambda_3=1 λ1=0,λ2=0,λ3=1,只有一项

Eg2 投影

给出一系列对称矩阵 A 2 = [ 0 1 1 0 ] , A 3 = [ 0 1 0 1 0 2 0 2 0 ] , A 4 = [ 0 1 0 0 1 0 2 0 0 2 0 3 0 0 3 0 ] \boldsymbol{A}_{2}=\left[\begin{array}{ll}0 & 1 \\1 & 0\end{array}\right], \boldsymbol{A}_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\1 & 0 & 2 \\0 & 2 & 0\end{array}\right], \boldsymbol{A}_{4}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\1 & 0 & 2 & 0 \\0 & 2 & 0 & 3 \\0 & 0 & 3 & 0\end{array}\right] A2=[0110],A3= 010102020 ,A4= 0100102002030030
希望将向量投影到 A 3 \boldsymbol{A}_{3} A3列空间,求投影矩阵 P \boldsymbol{P} P

求投影矩阵,首先看 A \boldsymbol{A} A是否可逆:
A \boldsymbol{A} A可逆,投影矩阵 P = I \boldsymbol{P}=\mathbf I P=I(因为 A 3 \boldsymbol{A}_{3} A3的列空间张成整个空间;任意向量 v \boldsymbol v v对整个空间的投影,就是该向量本身 P v = v \boldsymbol P \boldsymbol v=\boldsymbol v Pv=v P = I \boldsymbol{P}=\mathbf I P=I
A \boldsymbol{A} A不可逆/奇异,再使用通用的投影矩阵公式 P = A ( A T A ) − 1 A T \boldsymbol{P}=\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} P=A(ATA)1AT

  • 由于 A 3 \boldsymbol{A}_{3} A3不可逆(第一行和第三行成倍数),投影矩阵 P = A ( A T A ) − 1 A T = [ 1 / 5 0 2 / 5 0 1 0 2 / 5 0 4 / 5 ] \boldsymbol{P}=\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}=\left[\begin{array}{rrr} 1 / 5 & 0 & 2 / 5 \\0 & 1 & 0 \\2 / 5 & 0 & 4 / 5\end{array}\right] P=A(ATA)1AT= 1/502/50102/504/5

希望将向量投影到 A 4 \boldsymbol{A}_{4} A4列空间,求投影矩阵 P \boldsymbol{P} P

  • 由于 A 4 \boldsymbol{A}_{4} A4可逆( d e t ( A 4 ) = 9 det(\boldsymbol{A}_{4})=9 det(A4)=9), A 4 \boldsymbol{A}_{4} A4列空间就是整个空间本身,投影矩阵 P = I \boldsymbol{P}=\boldsymbol{I} P=I

另外,对于这一系列矩阵,我们可以得到一个大胆猜想:奇数序号的 A n \boldsymbol{A}_{n} An不可逆,偶数序号的 A n \boldsymbol{A}_{n} An可逆

Eg3 特征值

一个四阶方阵 A \mathbf A A的特征值为 λ 1 , λ 2 , λ 3 , λ 4 \lambda_1,\lambda_2,\lambda_3,\lambda_4 λ1,λ2,λ3,λ4,求 A \mathbf A A何时可逆

  • 可逆,则对应于“不降维”的线性变换,从而要求所有特征值 λ ≠ 0 \lambda\neq 0 λ=0

det ⁡ ( A − 1 ) \operatorname{det}\left(\boldsymbol{A}^{-1}\right) det(A1)

  • 由于 det ⁡ ( A − 1 ) \operatorname{det}\left(\boldsymbol{A}^{-1}\right) det(A1) A \mathbf A A的特征值互为倒数,则 det ⁡ ( A − 1 ) = ( 1 λ 1 ) ( 1 λ 2 ) ( 1 λ 3 ) ( 1 λ 4 ) \operatorname{det}\left(\boldsymbol{A}^{-1}\right)=\left(\frac{1}{\lambda_{1}}\right)\left(\frac{1}{\lambda_{2}}\right)\left(\frac{1}{\lambda_{3}}\right)\left(\frac{1}{\lambda_{4}}\right) det(A1)=(λ11)(λ21)(λ31)(λ41)

t r a c e ( A + I ) trace(\mathbf A+\mathbf I) trace(A+I)

  • ( A + I ) (\mathbf A+\mathbf I) (A+I)的特征值:由 d e t ( A + I − λ I ) = 0 det(\mathbf A+\mathbf I-\lambda \mathbf I)=0 det(A+IλI)=0 ( A + I ) (\mathbf A+\mathbf I) (A+I)的特征值刚好就是 λ 1 + 1 , λ 2 + 1 , λ 3 + 1 , λ 4 + 1 \lambda_1+1,\lambda_2+1,\lambda_3+1,\lambda_4+1 λ1+1,λ2+1,λ3+1,λ4+1,故 t r a c e ( A + I ) = λ 1 + λ 2 + λ 3 + λ 4 + 4 trace(\mathbf A+\mathbf I)=\lambda_1+\lambda_2+\lambda_3+\lambda_4+4 trace(A+I)=λ1+λ2+λ3+λ4+4

Eg4 差分方程

已知二阶差分方程 D n = D n − 1 − D n − 2 D_{n} = D_{n-1}- D_{n-2} Dn=Dn1Dn2和初值 D 0 D_0 D0,求 D k D_k Dk
我们将 [ D n D n − 1 ] \left[\begin{array}{c}D_{n} \\D_{n-1}\end{array}\right] [DnDn1]视为新的变量,从而改写为一阶差分方程 [ D n D n − 1 ] = [ 1 − 1 1 0 ] [ D n − 1 D n − 2 ] \left[\begin{array}{c}D_{n} \\D_{n-1}\end{array}\right] =\left[\begin{array}{cc}1 & -1 \\1 & 0\end{array}\right] \left[\begin{array}{l}D_{n-1} \\D_{n-2}\end{array}\right] [DnDn1]=[1110][Dn1Dn2]

那么,再次回到上面的矩阵幂问题:已知 u k + 1 = A u k \mathbf{u}_{k+1}=\boldsymbol{A} \mathbf{u}_{k} uk+1=Auk和初值 u 0 \mathbf{u}_0 u0,求 u k = A k u 0 \mathbf{u}_k=\boldsymbol{A}^k\mathbf{u}_0 uk=Aku0;( A = [ 1 − 1 1 0 ] \boldsymbol{A}=\left[\begin{array}{cc}1 & -1 \\1 & 0\end{array}\right] A=[1110]
求解方法是,先拆分 u 0 = c 1 x 1 + c 2 x 2 + c 3 x 3 \mathbf{u}_{0}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+c_{3} \mathbf{x}_{3} u0=c1x1+c2x2+c3x3,那么最终的解就是 u k = c 1 λ 1 k x 1 + c 2 λ 2 k x 2 + c 3 λ 3 k x 3 \mathbf{u}_{k}=c_{1} \lambda_{1}{ }^{k} \mathbf{x}_{1}+c_{2} \lambda_{2}{ }^{k} \mathbf{x}_{2}+c_{3} \lambda_{3}{ }^{k} \mathbf{x}_{3} uk=c1λ1kx1+c2λ2kx2+c3λ3kx3

  • 解: A = [ 1 − 1 1 0 ] \boldsymbol{A}=\left[\begin{array}{cc}1 & -1 \\1 & 0\end{array}\right] A=[1110],特征值和特征向量为 λ 1 = 1 + 3 i 2 , λ 2 = 1 − 3 i 2 \lambda_1=\frac{1 + \sqrt{3} i}{2},\lambda_2=\frac{1 - \sqrt{3} i}{2} λ1=21+3 i,λ2=213 i

关于“稳态”之前说过,对于实数特征值,特征值 ∣ λ i ∣ < 1 |\lambda_i|<1 λi<1的项最终会消失,特征值 ∣ λ i ∣ = 1 |\lambda_i|=1 λi=1的项恒定,特征值 ∣ λ i ∣ > 1 |\lambda_i|>1 λi>1的项最终不断增长
对于复数特征值,虚部引入了复平面上的“旋转”,故特征值的幅值仍然确定稳态,而相位则对应了每次做矩阵乘法时特征向量的旋转角度

  • 因此,根据欧拉公式 e j ϕ = c o s ϕ + j s i n ϕ e^{j\phi}=cos\phi+jsin\phi ejϕ=cosϕ+jsinϕ,可以将特征向量视为 λ 1 = e i π / 3 , λ 2 = e − i π / 3 \lambda_1=e ^{ i \pi / 3},\lambda_2=e ^{ -i \pi / 3} λ1=e/3,λ2=e/3,其幅值都为1,因此 A k u 0 \boldsymbol{A}^k\mathbf{u}_0 Aku0中对应的特征向量不会消失也不会无限增大,仅是在不断旋转;并且显然 λ 1 6 = λ 2 6 = 1 \lambda_{1}^{6}=\lambda_{2}^{6}=1 λ16=λ26=1,即每六次旋转回到实轴上,这说明 A 6 = I \boldsymbol{A}^6=\mathbf I A6=I(因为 u 6 = A 6 u 0 = c 1 λ 1 6 x 1 + c 2 λ 2 6 x 2 + c 3 λ 3 6 x 3 = c 1 x 1 + c 2 x 2 + c 3 x 3 = u 0 \mathbf{u}_6=\boldsymbol{A}^6\mathbf{u}_0=c_{1} \lambda_{1}{ }^{6} \mathbf{x}_{1}+c_{2} \lambda_{2}{ }^{6} \mathbf{x}_{2}+c_{3} \lambda_{3}{ }^{6} \mathbf{x}_{3}=c_{1}\mathbf{x}_{1}+c_{2}\mathbf{x}_{2}+c_{3}\mathbf{x}_{3}=\boldsymbol{u}^0 u6=A6u0=c1λ16x1+c2λ26x2+c3λ36x3=c1x1+c2x2+c3x3=u0
  • 对于 u k = A k u 0 \mathbf{u}_k=\boldsymbol{A}^k\mathbf{u}_0 uk=Aku0,最终可以得出 u k \mathbf{u}_k uk序列既不发散也不收敛,而是以6为周期不停循环(1,0,-1,-1,0,1)

Eg5 微分方程

求解微分方程 d u d x = A u = [ 0 − 1 0 1 0 − 1 0 1 0 ] u \frac{d \mathbf{u}}{d x}=\boldsymbol{A} \mathbf{u}=\left[\begin{array}{rrr} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right] \mathbf{u} dxdu=Au= 010101010 u

  • 求其通解的形式?
    通解形式为 u ( t ) = c 1 e λ 1 t x 1 + c 2 e λ 2 t x 2 + c 3 e λ 3 t x 3 \mathbf{u}(t)=c_{1} e^{\lambda_{1} t} x_{1}+c_{2} e^{\lambda_{2} t} x_{2}+c_{3} e^{\lambda_{3} t} x_{3} u(t)=c1eλ1tx1+c2eλ2tx2+c3eλ3tx3,我们需要进一步求特征值和特征向量
    最终求得 A = [ 0 − 1 0 1 0 − 1 0 1 0 ] \boldsymbol{A}=\left[\begin{array}{rrr}0 & -1 & 0 \\1 & 0 & -1 \\0 & 1 & 0\end{array}\right] A= 010101010 的特征值 λ 1 = 0 , λ 2 = 2 i , λ 3 = − 2 i \lambda_{1}=0, \lambda_{2}=\sqrt{2} i, \lambda_{3}=-\sqrt{2} i λ1=0,λ2=2 i,λ3=2 i(奇异阵,必然有特征值为0)
    和特征向量 x 1 = [ 1 0 1 ] , x 2 = [ − 1 2 i 1 ] , x 3 = [ 1 2 i − 1 ] \mathbf{x} 1=\left[\begin{array}{l}1 \\0 \\1\end{array}\right], \mathbf{x}_2=\left[\begin{array}{r}-1 \\\sqrt{2} i \\1\end{array}\right], \mathbf{x} 3=\left[\begin{array}{r}1 \\\sqrt{2} i \\-1\end{array}\right] x1= 101 ,x2= 12 i1 ,x3= 12 i1 (反对称阵/以及对称阵,满足 A T A = A A T \boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{T} ATA=AAT,具有正交的特征向量,可以做内积验证其正交性,但注意复向量的内积要取共轭)
    通解: u ( t ) = c 1 x 1 + c 2 e 2 i t x 2 + c 3 e − 2 i t x 3 \mathbf{u}(t)=c_{1} x_{1}+c_{2} e^{\sqrt{2} i t} x_{2}+c_{3} e^{-\sqrt{2} i t} x_{3} u(t)=c1x1+c2e2 itx2+c3e2 itx3,其中 x i x_i xi为三个特征向量
  • 通解收敛还是发散?

e λ 1 t e^{\lambda_{1} t} eλ1t视为 A e j ϕ Ae^{j\phi} Aejϕ的形式,实部 R e { λ } Re\{\lambda\} Re{λ}决定了稳定性(即决定幅值的增长速度,因为 ∣ e a + j b ∣ = ∣ e a ∣ ∣ e j b ∣ = ∣ e a ∣ |e^{a+jb}|=|e^{a}||e^{jb}|=|e^{a}| ea+jb=ea∣∣ejb=ea),虚部 I m { λ } Im\{\lambda\} Im{λ}对应了单位圆上的相位旋转
R e { λ } > 0 Re\{\lambda\}>0 Re{λ}>0,对应项发散; R e { λ } = 0 Re\{\lambda\}=0 Re{λ}=0,对应项幅值稳定不变; R e { λ } < 0 Re\{\lambda\}<0 Re{λ}<0,对应项消失( t → ∞ 时 u ( t ) → 0 t\rightarrow \infty 时\mathbf{u}(\mathrm{t})\rightarrow 0 tu(t)0

解:既不收敛也不发散,因为 λ 1 = 0 , λ 2 = 2 i , λ 3 = − 2 i \lambda_{1}=0, \lambda_{2}=\sqrt{2} i, \lambda_{3}=-\sqrt{2} i λ1=0,λ2=2 i,λ3=2 i,所有 R e { λ } = 0 Re\{\lambda\}=0 Re{λ}=0,对应项幅值稳定不变;
另外,虚部对应单位圆上的旋转,故 u ( t ) \mathbf{u}(t) u(t)以周期 T = 2 π T=\sqrt{2} \pi T=2 π循环(满足 2 i T = 2 π i \sqrt{2} iT =2 \pi i 2 iT=2πi

  • 如果从另一角度求解方程,通解为 u ( t ) = e A t u ( 0 ) \mathbf{u}(t) =e^{\boldsymbol{A} t} \mathbf{u}(0) u(t)=eAtu(0),求其中的 e A t e^{\boldsymbol{A} t} eAt
    解:假如 A = S Λ S − 1 \boldsymbol{A} =\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1} A=SΛS1,则 e A t = S e Λ t S − 1 e^{\boldsymbol{A} t} =\boldsymbol{S} e^{\boldsymbol{\Lambda} t} \boldsymbol{S}^{-1} eAt=SeΛtS1
    其中 e Λ t = [ e λ 1 t 0 ⋯ 0 0 e λ 2 t 0 ⋮ ⋱ ⋮ 0 ⋯ 0 e λ n t ] e^{\boldsymbol{\Lambda} t} =\left[\begin{array}{cccc} e^{\lambda_{1} t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_{2} t} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & e^{\lambda_{n} t} \end{array}\right] eΛt= eλ1t000eλ2t000eλnt
    可见,两种角度得到的解是相同的

从另一个角度(方程解耦)求解微分方程
(前提:若 A \mathbf A A有n个无关的特征向量方程,矩阵可以对角化 A = S Λ S − 1 \boldsymbol{A} =\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1} A=SΛS1
d u d t = A u \frac{d \mathbf{u}}{d t} =\boldsymbol{A} \mathbf{u} dtdu=Au的解解就是 u ( t ) = e A t u ( 0 ) \mathbf{u}(t)=e^{\boldsymbol{A} t} \mathbf{u}(0) u(t)=eAtu(0),其中 e A t = S e Λ t S − 1 e^{\mathbf At}=\boldsymbol{S} e^{\boldsymbol{\Lambda} t} \boldsymbol{S}^{-1} eAt=SeΛtS1,意义是坐标变换

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值