回顾
- 基变换的意义:在不同坐标系下,观察同一个向量(坐标变换问题)/观察同一个线性变换(相似矩阵问题)
- 相似矩阵: B = M − 1 A M \boldsymbol{B}=\boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{M} B=M−1AM,同一个线性变换,在不同坐标系表现为不同相似矩阵(两矩阵特征值相同,但特征向量不同)
引入特征值和特征向量 A x = λ x \boldsymbol{A} \mathbf{x}=\lambda \mathbf{x} Ax=λx
- 对于具有n个无关特征向量的矩阵,可以实施相似对角化:
A
=
S
−
1
Λ
S
\boldsymbol{A}=\boldsymbol{S}^{-1} \boldsymbol{\Lambda} \boldsymbol{S}
A=S−1ΛS(对角阵
Λ
\boldsymbol{\Lambda}
Λ保持特征值,
S
\boldsymbol{S}
S保存特征向量)
优势:计算矩阵幂更方便 A k = S − 1 Λ k S \boldsymbol{A}^{k}=\boldsymbol{S}^{-1} \boldsymbol{\Lambda}^{k} \boldsymbol{S} Ak=S−1ΛkS
应用:微分方程 d u / d t = A u \mathrm{d} \mathbf{u} / \mathrm{dt}=\boldsymbol{A} \mathbf{u} du/dt=Au和矩阵指数形式 e A t e^{\boldsymbol{A} t} eAt - 对称矩阵:
A
=
A
T
或
A
=
A
H
(
复数矩阵
)
\boldsymbol{A}=\boldsymbol{A}^T或\boldsymbol{A}=\boldsymbol{A}^H(复数矩阵)
A=AT或A=AH(复数矩阵)
一定能得到n个正交的特征向量(即使有重特征值,也有足够的线性无关特征向量),一定有实数特征值
对称阵对角化更加简洁: A = Q Λ Q T \boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T} A=QΛQT(特征向量矩阵为正交矩阵,满足 Q − 1 = Q T \boldsymbol{Q}^{-1}=\boldsymbol{Q}^T Q−1=QT) - 正定矩阵,在对称阵基础上,还有正实数特征值,可用于判断二次型的几何图像特征
- 奇异值分解SVD: A = U Σ V T \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} A=UΣVT
例题
Eg1 各种矩阵的特征值特点
对于某矩阵 A \mathbf A A,其特征值 λ 1 = 0 , λ 2 = c , λ 3 = 2 \lambda_{1}=0, \lambda_{2}=c, \lambda_{3}=2 λ1=0,λ2=c,λ3=2
特征向量 x 1 = [ 1 1 1 ] , x 2 = [ 1 − 1 0 ] , x 3 = [ 1 1 − 2 ] \mathbf{x} 1=\left[\begin{array}{l}1 \\1 \\1\end{array}\right] , \mathbf{x} 2=\left[\begin{array}{r}1 \\-1 \\0\end{array}\right], \mathbf{x} 3=\left[\begin{array}{r}1 \\1 \\-2\end{array}\right] x1=⎣ ⎡111⎦ ⎤,x2=⎣ ⎡1−10⎦ ⎤,x3=⎣ ⎡11−2⎦ ⎤
-
c
c
c如何取值,保证矩阵
A
\mathbf A
A可对角化?
对角化仅取决于是否有n个无关的特征向量, c c c可以取任意值 -
c
c
c如何取值,保证矩阵
A
\mathbf A
A对阵?
对称矩阵特征向量正交,这里已经满足
对称矩阵特征值全为实数, c c c需要取实数 -
c
c
c如何取值,保证矩阵
A
\mathbf A
A正定?
正定矩阵特征值全为正实数,然而有 λ 1 = 0 \lambda_{1}=0 λ1=0,故 c c c取任何值都不能保证矩阵 A \mathbf A A正定(但是 c ≥ 0 c\geq 0 c≥0可保证矩阵半正定) -
c
c
c如何取值,保证矩阵
1
2
A
\frac{1}{2}\mathbf A
21A为投影矩阵?
投影矩阵特征值只能为0或1( P 2 = P \mathbf P^2=\mathbf P P2=P,两次变换叠加则 λ 2 = λ \lambda^2=\lambda λ2=λ,故 λ = 0 或 1 \lambda=0或1 λ=0或1),故 c = 0 或 2 c=0或2 c=0或2
Eg2 对称矩阵和正交矩阵的特点
已经矩阵 A \mathbf A A对称且正交
-
A
\mathbf A
A的特征值有何限制?
①对称阵,特征值为实数;②正交矩阵,特征值 ∣ λ ∣ = 1 |\lambda|=1 ∣λ∣=1(正交矩阵对应旋转变换;或者由于 Q x = λ x \mathbf Q\mathbf x=\lambda\mathbf x Qx=λx,而正交矩阵与任意向量相乘不改变其长度 ∥ Q x ∥ = ∥ x ∥ = ∥ λ x ∥ \|\mathbf Q\mathbf x\|=\|\mathbf x\|=\|\lambda\mathbf x\| ∥Qx∥=∥x∥=∥λx∥)
综上, A \mathbf A A的特征值满足 λ = ± 1 \lambda=\pm1 λ=±1 -
A
\mathbf A
A是否可逆
A \mathbf A A没有零特征值,必可逆;或者说,正交矩阵一定可逆 -
A
\mathbf A
A是否正定
当有特征值 λ = − 1 \lambda=-1 λ=−1,不是正定的 -
A
\mathbf A
A是否可以对角化
可以,因为对称阵/正交阵 一定有n个无关(且正交)的特征向量(即使很可能有重特征值),必然可以对角化 - 证明:
P
=
(
1
/
2
)
(
A
+
I
)
\boldsymbol{P}=(1 / 2)(\boldsymbol{A}+\boldsymbol{I})
P=(1/2)(A+I)为投影矩阵
思路:验证该矩阵满足投影矩阵的各性质①投影矩阵为对称阵(满足)② P 2 = P \boldsymbol P^2=\boldsymbol P P2=P,最终只需要证明②
证明②,法1:计算 P 2 = ( 1 2 ( A + I ) ) 2 = 1 4 ( A 2 + 2 A + I ) \boldsymbol{P}^{2}=\left(\frac{1}{2}(\boldsymbol{A}+\boldsymbol{I})\right)^{2}=\frac{1}{4}\left(\boldsymbol{A}^{2}+2 \boldsymbol{A}+\boldsymbol{I}\right) P2=(21(A+I))2=41(A2+2A+I)
其中,由于 A \mathbf A A对称且正交,有 A = A T = A − 1 \mathbf A=\mathbf A^T=\mathbf A^{-1} A=AT=A−1,故 A 2 = I \boldsymbol{A}^{2}=\boldsymbol I A2=I,带入上式得到 P 2 = 1 2 ( A + I ) = P \boldsymbol P^2=\frac{1}{2}(\boldsymbol{A}+\boldsymbol{I})=\boldsymbol P P2=21(A+I)=P
证明②,法2:投影矩阵的特征值只可能为0或1,转为验证该矩阵的特征值为0或1
由于上面说过, A \mathbf A A的特征值满足 λ = ± 1 \lambda=\pm1 λ=±1,则 A + I \mathbf A+\mathbf I A+I特征值 λ = 0 或 2 \lambda=0或2 λ=0或2(原来的特征值满足 d e t ( A − λ I ) = 0 det(\mathbf A-\lambda\mathbf I)=0 det(A−λI)=0,那么 d e t [ ( A + I ) − λ ′ I ] = 0 det[(\mathbf A+\mathbf I)-\lambda'\mathbf I]=0 det[(A+I)−λ′I]=0的解为 λ ′ = λ + 1 \lambda'=\lambda+1 λ′=λ+1),则 P = ( 1 / 2 ) ( A + I ) \boldsymbol{P}=(1 / 2)(\boldsymbol{A}+\boldsymbol{I}) P=(1/2)(A+I)特征值 λ = 0 或 1 \lambda=0或1 λ=0或1