§第五章第四节对称矩阵的相似矩阵
定理5.对称矩阵的特征值为实数.
证:设复数λ为对称矩阵A的特征值,复向量x为λ对应的特征向量,即Ax=λx,x≠0.用λ ¯ 表示λ的共轭复数,用x ¯ 表示x的共轭复向量.则Ax ¯ =A ¯ x ¯ =(Ax ¯ ¯ ¯ ¯ ¯ )=(λx ¯ ¯ ¯ ¯ )=λ ¯ x ¯ .于是有x ¯ T Ax=x ¯ T (Ax)=x ¯ T λx=λx ¯ T x,又因为A是对称矩阵,A=A T x ¯ T Ax=(x ¯ T A T )x=(Ax ¯ ) T x=(λ ¯ x ¯ )x=λ ¯ x ¯ T x.两式相减,得(λ−λ ¯ )x ¯ T x=0,但因x≠0,所以x ¯ T x=∑ n i=1 x ¯ i x i =∑ n i=1 |x i | 2 ≠0, 故λ−λ ¯ =0,即λ=λ ¯ ,这就说明λ是实数.
显然,当特征值λ i 为实数时,齐次线性方程组(A−λE)x=0是实系数方程组,由|A−λ i E|=0知必有实的基础解系,所以对应的特征向量可以取实向量.
定理6.设λ 1 ,λ 2 是对称矩阵A的两个特征值,p 1 ,p 2 是对应的特征值,若λ 1 ≠λ 2 ,则p 1 与p 2 正交.
证:因为Ap 1 =λ 1 p 1 ,Ap 2 =λ 2 p 2 ,且λ 1 ≠λ 2 ,所以,λ 1 p T 2 p 1 =p T 2 λ 1 p 1 =p T 2 Ap 1 =p T 2 A T p 1 =(Ap 2 ) T p 1 =(λ 2 p 2 ) T p 1 =λ 2 p T 2 p 1 从而,(λ 1 −λ 2 )p T 2 p 1 =0但λ 1 ≠λ 2 ,故p T 2 p 1 =0即p 1 与p 2 正交.
定理7.设A为n阶对称矩阵,λ是A的特征方程的r重根,则矩阵A−λE的秩R(A−λE)=n−r,从而对应特征值λ恰有r个线性无关的特征向量.
定理8.设A为n阶的对称矩阵,则必有正交矩阵P,使P −1 AP=Λ,其中Λ是以A的n个特征值为对角元素的对角矩阵.
证:设A的互不相等的特征值为λ 1 ,λ 2 ,⋯,λ s ,它们的重数依次为r 1 ,r 2 ,⋯,r s (r 1 +r 2 +⋯+r s =n).根据定理5及定理7知,对应特征值λ i (i=1,2,⋯,s),恰有r i 个线性无关的实特征向量,把它们施密特标准正交化,即得r i 个两两正交单位特征向量.由r 1 +r 2 +⋯+r s =n,知这样的特征向量共可得n个.按定理6知对应于不同特征值的特征向量正交,故这n个单位特征向量两两正交.于是以它们为列向量构成正交矩阵P,并有P −1 AP=Λ.其中对角矩阵Λ的对角元素含r 1 个λ 1 ,r 2 个λ 2 ,⋯,r s 个λ s ,恰是A的n个特征值.
例1.设A=⎛ ⎝ ⎜ 400 031 013 ⎞ ⎠ ⎟ ,求一个正交矩阵P,使P −1 AP=Λ为对角矩阵.
解:①由|A−λE|=0,求A的全部特征值.|A−λE|=∣ ∣ ∣ ∣ 4−λ00 03−λ1 013−λ ∣ ∣ ∣ ∣ =(−1) (1+1) (4−λ)[(3−λ)(3−λ)−1×1]=−(λ−2)(λ−4) 2 =0解得A的特征值为:λ 1 =2,λ 2 =λ 3 =4.②由(A−λE)x=0,求A的特征向量.当λ 1 =2时,(A−2E)x=0,由A−2E=⎛ ⎝ ⎜ 200 011 011 ⎞ ⎠ ⎟ ∼⎛ ⎝ ⎜ 100 010 010 ⎞ ⎠ ⎟ 得基础解系p 1 =⎛ ⎝ ⎜ 0−11 ⎞ ⎠ ⎟ ,单位化p 1 =12 √ ⎛ ⎝ ⎜ 0−11 ⎞ ⎠ ⎟ 当λ 2 =λ 3 =4时,由A−4E=⎛ ⎝ ⎜ 000 0−11 01−1 ⎞ ⎠ ⎟ ∼⎛ ⎝ ⎜ 000 010 0−10 ⎞ ⎠ ⎟ 解得基础解系p 2 =⎛ ⎝ ⎜ 100 ⎞ ⎠ ⎟ ,p 3 =⎛ ⎝ ⎜ 011 ⎞ ⎠ ⎟ 基础解系中两个向量恰好正交,单位化得两个正交的单位特征向量.单位化p 2 =⎛ ⎝ ⎜ 100 ⎞ ⎠ ⎟ ,p 3 =12 √ ⎛ ⎝ ⎜ 011 ⎞ ⎠ ⎟ ③由p 1 ,p 2 ,p 3 拼出正交矩阵P,P=(p 1 ,p 2 ,p 3 )=⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ 0−12 √ 12 √ 100 012 √ 12 √ ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ④可以验证确有P −1 AP=P T AP=⎛ ⎝ ⎜ 200 040 004 ⎞ ⎠ ⎟
在此例中对应于λ=4,若求得方程(A−λE)x=0的基础解系α 1 =⎛ ⎝ ⎜ 111 ⎞ ⎠ ⎟ ,α 2 =⎛ ⎝ ⎜ −111 ⎞ ⎠ ⎟ ,则需要把它施密特标准正交化:令b 1 =α 1 ,e 1 =b 1 ∥b 1 ∥ =13 √ ⎛ ⎝ ⎜ 111 ⎞ ⎠ ⎟ ,令b 2 =α 2 −[α 2 ,e 1 ]e 1 =α 2 −[α 2 ,b 1 ]b 1 ∥b 1 ∥ 2 =⎛ ⎝ ⎜ −111 ⎞ ⎠ ⎟ −13 ⎛ ⎝ ⎜ 111 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ −43 23 23 ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ =23 ⎛ ⎝ ⎜ −211 ⎞ ⎠ ⎟ ,e 2 =b 2 ∥b 2 ∥ =16 √ ⎛ ⎝ ⎜ −211 ⎞ ⎠ ⎟ .于是得正交矩阵p=⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ 0−12 √ 12 √ 13 √ 13 √ 13 √ −26 √ 16 √ 16 √ ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ 可以验证确有P −1 AP=P T AP=⎛ ⎝ ⎜ 200 040 004 ⎞ ⎠ ⎟ 由此可见,把一个方阵化成对角矩阵所用的正交变换矩阵P不是唯一的.
例2.设矩阵A=⎛ ⎝ ⎜ 101 020 101 ⎞ ⎠ ⎟ ,矩阵B=(kE+A) 2 ,其中k为实数,E为单位矩阵,求对角矩阵Λ,使得B与Λ相似,并求k为何值时,B为奇异矩阵.
解:由|A−λE|=∣ ∣ ∣ ∣ 1−λ01 02−λ0 101−λ ∣ ∣ ∣ ∣ =(−1) (2+2) (2−λ)[(1−λ) 2 −1×1]=−λ(λ−2) 2 =0,解得A的特征值为:λ 1 =0,λ 2 =λ 3 =2.记对角矩阵Λ=⎛ ⎝ ⎜ 000 020 002 ⎞ ⎠ ⎟ ,因为A为对称矩阵,故存在正交矩阵P,使得P T AP=Λ.所以A=PΛP T ,于是B=(kE+A) 2 =(kPP T +PΛP T ) 2 =[P(kE+Λ)P T )][P(kE+Λ)P T )]=P(kE+Λ) 2 P T =P⎛ ⎝ ⎜ ⎜ k 2 (k+2) 2 (k+2) 2 ⎞ ⎠ ⎟ ⎟ P T 由此可得B对应相似对角矩阵的Λ=⎛ ⎝ ⎜ ⎜ k 2 (k+2) 2 (k+2) 2 ⎞ ⎠ ⎟ ⎟ .显然,B与A相似,且k=0或k=−2时,B为奇异矩阵.
例3.设3阶方阵A的特征值为λ 1 =1,λ 2 =2,λ 3 =3,对应的特征向量依次为α 1 =(1,1,1) T ,α 2 =(1,2,4) T ,α 3 =(1,3,9) T ,又向量β=(1,1,3) T .(1)将β用α 1 ,α 2 ,α 3 线性表示.(2)求A n β.
解:(1)设β=x 1 α 1 +x 2 α 2 +x 3 α 3 ,即⎛ ⎝ ⎜ 111 124 139 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ x 1 x 2 x 3 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 113 ⎞ ⎠ ⎟ ,由于增广矩阵⎛ ⎝ ⎜ 111 124 139 113 ⎞ ⎠ ⎟ ∼⎛ ⎝ ⎜ 100 010 001 2−21 ⎞ ⎠ ⎟ 解得x 1 =2,x 2 =−2,x 3 =1,故β=2α 1 −2α 2 +α 3 .(2)令Λ=⎛ ⎝ ⎜ 1 2 3 ⎞ ⎠ ⎟ ,P=(α 1 ,α 2 ,α 3 )=⎛ ⎝ ⎜ 111 124 139 ⎞ ⎠ ⎟ ,则A=PΛP −1 ,即A n =PΛ n P −1 ,而β=(α 1 ,α 2 ,α 3 )⎛ ⎝ ⎜ 2−21 ⎞ ⎠ ⎟ =Pα,从而A n β=PΛ n P −1 β=PΛ n P −1 Pα=PΛ n α=⎛ ⎝ ⎜ 111 124 139 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 1 2 n 3 n ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 2−21 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 111 2 n 2 n+1 2 n+2 3 n 3 n+1 3 n+2 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 2−21 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 222 −2 n+1 −2 n+2 −2 n+3 3 n 3 n+1 3 n+2 ⎞ ⎠ ⎟