线性代数 05.04 对称矩阵的相似矩阵

§ 

5.. 
:λA,xλ,Ax=λx,x0.λ ¯ λ,x ¯ x.Ax ¯ =A ¯ x ¯ =(Ax ¯ ¯ ¯ ¯ ¯  )=(λx ¯ ¯ ¯ ¯  )=λ ¯ x ¯ .x ¯  T Ax=x ¯  T (Ax)=x ¯  T λx=λx ¯  T x,A,A=A T x ¯  T Ax=(x ¯  T A T )x=(Ax ¯ ) T x=(λ ¯ x ¯ )x=λ ¯ x ¯  T x.,(λλ ¯ )x ¯  T x=0,x0,x ¯  T x= n i=1 x ¯  i x i = n i=1 |x i | 2 0, λλ ¯ =0,λ=λ ¯ ,λ. 

,λ i ,线(AλE)x=0,|Aλ i E|=0,. 

6.λ 1 ,λ 2 A,p 1 ,p 2 ,λ 1 λ 2 ,p 1 p 2 . 
:Ap 1 =λ 1 p 1 ,Ap 2 =λ 2 p 2 ,λ 1 λ 2 ,,λ 1 p T 2 p 1 =p T 2 λ 1 p 1 =p T 2 Ap 1 =p T 2 A T p 1 =(Ap 2 ) T p 1 =(λ 2 p 2 ) T p 1 =λ 2 p T 2 p 1 (λ 1 λ 2 )p T 2 p 1 =0λ 1 λ 2 ,p T 2 p 1 =0p 1 p 2 . 

7.An,λAr,AλER(AλE)=nr,λr线. 

8.An,P,使P 1 AP=Λ,ΛAn. 
:Aλ 1 ,λ 2 ,,λ s ,r 1 ,r 2 ,,r s (r 1 +r 2 ++r s =n).57,λ i (i=1,2,,s),r i 线,,r i .r 1 +r 2 ++r s =n,n.6,n.P,P 1 AP=Λ.Λr 1 λ 1 ,r 2 λ 2 ,,r s λ s ,An. 

1.A=⎛ ⎝ ⎜ 400 031 013 ⎞ ⎠ ⎟ ,P,使P 1 AP=Λ. 
:|AλE|=0,A.|AλE|=∣ ∣ ∣ ∣ 4λ00 03λ1 013λ ∣ ∣ ∣ ∣ =(1) (1+1) (4λ)[(3λ)(3λ)1×1]=(λ2)(λ4) 2 =0A:λ 1 =2,λ 2 =λ 3 =4.(AλE)x=0,A.λ 1 =2,(A2E)x=0,A2E=⎛ ⎝ ⎜ 200 011 011 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 100 010 010 ⎞ ⎠ ⎟ p 1 =⎛ ⎝ ⎜ 011 ⎞ ⎠ ⎟ ,p 1 =12    ⎛ ⎝ ⎜ 011 ⎞ ⎠ ⎟ λ 2 =λ 3 =4,A4E=⎛ ⎝ ⎜ 000 011 011 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 000 010 010 ⎞ ⎠ ⎟ p 2 =⎛ ⎝ ⎜ 100 ⎞ ⎠ ⎟ ,p 3 =⎛ ⎝ ⎜ 011 ⎞ ⎠ ⎟ ,.p 2 =⎛ ⎝ ⎜ 100 ⎞ ⎠ ⎟ ,p 3 =12    ⎛ ⎝ ⎜ 011 ⎞ ⎠ ⎟ p 1 ,p 2 ,p 3 P,P=(p 1 ,p 2 ,p 3 )=⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ 012    12     100 012    12     ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ P 1 AP=P T AP=⎛ ⎝ ⎜ 200 040 004 ⎞ ⎠ ⎟  
λ=4,(AλE)x=0α 1 =⎛ ⎝ ⎜ 111 ⎞ ⎠ ⎟ ,α 2 =⎛ ⎝ ⎜ 111 ⎞ ⎠ ⎟ ,:b 1 =α 1 ,e 1 =b 1 b 1  =13    ⎛ ⎝ ⎜ 111 ⎞ ⎠ ⎟ ,b 2 =α 2 [α 2 ,e 1 ]e 1 =α 2 [α 2 ,b 1 ]b 1 b 1  2  =⎛ ⎝ ⎜ 111 ⎞ ⎠ ⎟ 13 ⎛ ⎝ ⎜ 111 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ 43 23 23  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ =23 ⎛ ⎝ ⎜ 211 ⎞ ⎠ ⎟ ,e 2 =b 2 b 2  =16    ⎛ ⎝ ⎜ 211 ⎞ ⎠ ⎟ .p=⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ 012    12     13    13    13     26    16    16     ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ P 1 AP=P T AP=⎛ ⎝ ⎜ 200 040 004 ⎞ ⎠ ⎟ ,P. 

2.A=⎛ ⎝ ⎜ 101 020 101 ⎞ ⎠ ⎟ ,B=(kE+A) 2 ,k,E,Λ,使BΛ,k,B. 
:|AλE|=∣ ∣ ∣ ∣ 1λ01 02λ0 101λ ∣ ∣ ∣ ∣ =(1) (2+2) (2λ)[(1λ) 2 1×1]=λ(λ2) 2 =0,A:λ 1 =0,λ 2 =λ 3 =2.Λ=⎛ ⎝ ⎜ 000 020 002 ⎞ ⎠ ⎟ ,A,P,使P T AP=Λ.A=PΛP T ,B=(kE+A) 2 =(kPP T +PΛP T ) 2 =[P(kE+Λ)P T )][P(kE+Λ)P T )]=P(kE+Λ) 2 P T =P⎛ ⎝ ⎜ ⎜ k 2  (k+2) 2  (k+2) 2  ⎞ ⎠ ⎟ ⎟ P T BΛ=⎛ ⎝ ⎜ ⎜ k 2  (k+2) 2  (k+2) 2  ⎞ ⎠ ⎟ ⎟ .,BA,k=0k=2,B. 

3.3Aλ 1 =1,λ 2 =2,λ 3 =3,α 1 =(1,1,1) T ,α 2 =(1,2,4) T ,α 3 =(1,3,9) T ,β=(1,1,3) T .(1)βα 1 ,α 2 ,α 3 线.(2)A n β. 
:(1)β=x 1 α 1 +x 2 α 2 +x 3 α 3 ,⎛ ⎝ ⎜ 111 124 139 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ x 1 x 2 x 3  ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 113 ⎞ ⎠ ⎟ ,广⎛ ⎝ ⎜ 111 124 139 113 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 100 010 001 221 ⎞ ⎠ ⎟ x 1 =2,x 2 =2,x 3 =1,β=2α 1 2α 2 +α 3 .(2)Λ=⎛ ⎝ ⎜ 1 2 3 ⎞ ⎠ ⎟ ,P=(α 1 ,α 2 ,α 3 )=⎛ ⎝ ⎜ 111 124 139 ⎞ ⎠ ⎟ ,A=PΛP 1 ,A n =PΛ n P 1 ,β=(α 1 ,α 2 ,α 3 )⎛ ⎝ ⎜ 221 ⎞ ⎠ ⎟ =Pα,A n β=PΛ n P 1 β=PΛ n P 1 Pα=PΛ n α=⎛ ⎝ ⎜ 111 124 139 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 1 2 n  3 n  ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 221 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 111 2 n 2 n+1 2 n+2  3 n 3 n+1 3 n+2  ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 221 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 222 2 n+1 2 n+2 2 n+3  3 n 3 n+1 3 n+2  ⎞ ⎠ ⎟  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值