HDU 1502(Regular Words)

动态规划和大数加法的结合,设 dp[i][j][k] 表示字符串中 A 的数量为 i,B 的数量为 j, C的数量为 k,且满足 i >= j >= k 的字符串的个数。

状态转移方程为 dp[i][j][k] = dp[i - 1][j][k] + dp[i][j - 1][k] + dp[i][j][k - 1]

#include <iostream>
using namespace std;
const int MAXN = 65;
const int MAXT = 100;

char dp[MAXN][MAXN][MAXN][MAXT]; //前3维表示dp[i][j][k],第4维存储大数值

//打表
void init()
{
    dp[0][0][0][1] = 1;
    for (int i = 1; i < MAXN; i++) //动态规划
    {
        for (int j = 0; j <= i; j++)
        {
            for (int k = 0; k <= j; k++)
            {
                for (int t = 1; t < MAXT - 2; t++) //大数加法
                {
                    dp[i][j][k][t] += dp[i - 1][j][k][t];
                    if (j >= 1)
                        dp[i][j][k][t] += dp[i][j - 1][k][t];
                    if (k >= 1)
                        dp[i][j][k][t] += dp[i][j][k - 1][t];
                    dp[i][j][k][t + 1] += dp[i][j][k][t] / 10;
                    dp[i][j][k][t] = dp[i][j][k][t] % 10;
                }
                if (i == j && j == k)
                {
                    int temp = MAXT;
                    while (!dp[i][j][k][temp])
                        --temp;
                    dp[i][j][k][0] = temp; //第0个位置存储大数位数
                }
            }
        }
    }
}

int main()
{
    init(); 
    int n;
    while (cin >> n)
    {
        int num = dp[n][n][n][0];
        for (int i = num; i >= 1; i--)
            cout << char(dp[n][n][n][i] + '0');
        cout << endl << endl;
    }
    return 0;
}

继续加油。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值