代码随想录算法训练营第31天| 455.分发饼干、376. 摆动序列、53. 最大子序和

455.分发饼干

题目链接:分发饼干

题目描述:假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

解题思想:

为了满足更多的小孩,就不要造成饼干尺寸的浪费。

大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。

这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。可以尝试使用贪心策略,先将饼干数组和小孩数组排序。

然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());

        int count = 0;
        int index = s.size() - 1;
        for (int j = g.size() - 1; j >= 0; j--) {
            if (index >=0 && s[index] >= g[j]) {
                index--;
                count++;
            }
        }
        return count;
    }
};

也可以优先小饼干满足小胃口,从前向后遍历饼干数组,用小饼干满足小胃口,并统计小孩的数量。

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());

        int index = 0;
        for (int i = 0; i < s.size();i++) {
            if (index < g.size() && s[i] >= g[index]) {
                index++;
            }
        }
        return index;
    }
};

376. 摆动序列

题目链接:摆动序列

题目描述:如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 **摆动序列 。**第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
  • 相反,[1, 4, 7, 2, 5][1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列最长子序列的长度

解题思想:

在这里插入图片描述

局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列

在计算是否有峰值的时候,大家知道遍历的下标 i ,计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。

这是我们思考本题的一个大题思路,但本题要考虑三种情况:

  1. 情况一:上下坡中有平坡
  2. 情况二:数组首尾两端
  3. 情况三:单调坡中有平坡

情况一:上下坡中有平坡

例如 [1,2,2,2,1]这样的数组,如图:

在这里插入图片描述

它的摇摆序列长度是多少呢? 其实是长度是 3,也就是我们在删除的时候 要不删除左面的三个 2,要不就删除右边的三个 2。

我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0),为什么这里允许 prediff == 0 ,就是为了删除平坡中的连续元素只保留一个。

情况二:数组首尾两端

所以本题统计峰值的时候,数组最左面和最右面如何统计呢?题目中说了,如果只有两个不同的元素,那摆动序列也是 2。

首元素可以统一为有平坡的情况,即curdiff初始化为0。尾元素一直都计算在摆动序列长度内,count从1开始记数。

情况三:单调坡中有平坡

在这里插入图片描述

只需要在这个坡度摆动变化的时候,更新 prediff 就行,这样 prediff 在单调区间有平坡的时候就不会发生变化,造成我们的误判

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int prediff = 0;
        int curdiff;
        int count = 1;
        for (int i = 0; i < nums.size() - 1; i++) {
            curdiff = nums[i + 1] - nums[i];
            if ((curdiff > 0 && prediff <= 0) ||
                (curdiff < 0 && prediff >= 0)) {
                count++;
                prediff = curdiff;
            }
        }
        return count;
    }
};

53. 最大子序和

题目链接:最大子序和

题目描述:给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分。

解题思想:

最笨的解法就是暴力解法,两层for循环,一层确定开始位置,一层确定终止位置。

贪心算法:

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

全局最优:选取最大“连续和”

局部最优的情况下,并记录最大的“连续和”,可以推出全局最优

在这里插入图片描述

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int sum = 0;
        int result = INT32_MIN;
        for (int i = 0; i < nums.size(); i++) {
            sum += nums[i];
            if (sum > result)
                result = sum;
            if (sum <= 0)
                sum = 0;
        }
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值