代码随想录算法训练营第50天|123.买卖股票的最佳时机III、188.买卖股票的最佳时机IV

本文讲述了如何运用动态规划方法解决买卖股票的问题,包括单次交易和最多k次交易的优化策略,通过递推公式和代码实例展示了求解过程。
摘要由CSDN通过智能技术生成

123.买卖股票的最佳时机III

题目链接:买卖股票的最佳时机III

题目描述:给定一个数组,它的第 **i 个元素是一支给定的股票在第 i **天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

动态规划:

主要是要进行状态拆分

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][0] 表示第i天第一次持有股票所得最多现金
    dp[i][1] 表示第i天第一次不持有股票所得最多现金
    dp[i][2] 表示第i天第二次持有股票所得最多现金
    dp[i][3] 表示第i天第二次不持有股票所得最多现金
  2. 确定递推公式
    • 如果第i天第一次持有股票即dp[i][0], 那么可以由两个状态推出来

      • 第i-1天就第一次持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
      • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]

      那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

    • 如果第i天第一次不持有股票即dp[i][1], 也可以由两个状态推出来

      • 第i-1天就第一次不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
      • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

      同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

    • 如果第i天第二次持有股票即dp[i][2], 那么可以由两个状态推出来

      • 第i-1天就第二次持有股票,继续维持dp[i - 1][2]
      • 第i-1天第一次不持有股票,prices[i] + dp[i - 1][1]

      同样dp[i][2]取最大的,dp[i][2] = max(dp[i - 1][2], prices[i] + dp[i - 1][1]);

    • 如果第i天第二次不持有股票即dp[i][3], 也可以由两个状态推出来

      • 第i-1天就第二次不持有股票,那么就保持现状,dp[i - 1][3]
      • 第i天卖出股票,第二天持有股票加上当日股价,得现金即:prices[i] + dp[i - 1][2]
  3. dp数组如何初始化
    dp[0][0]和dp[0][2]第0天不管第几次持有都是-prices[0]因为可以买完卖,然后再买。
    dp[0][1]和dp[0][3]第0天不管第几次不持有都是0
  4. 确定遍历顺序
    从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        vector<vector<int>> dp(prices.size(), vector<int>(4, 0));
        dp[0][0] = -prices[0];
        dp[0][2] = -prices[0];

        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] - prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] + prices[i]);
        }

        return dp[prices.size()-1][3];
    }
};

188.买卖股票的最佳时机IV

题目链接:买卖股票的最佳时机IV

题目描述:给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i **天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

动态规划:

这个题目就是上个题目的扩展,把2扩展到k。其他的题目都一样,具体实现就是加上了个循环在k遍历。

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        vector<vector<int>> dp(prices.size(), vector<int>(2 * k, 0));
        for (int i = 0; i < k; i++) {
            dp[0][i * 2] = -prices[0];
        }
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);

            for (int j = 1; j < k; j++) {
                dp[i][2 * j] =
                    max(dp[i - 1][2 * j], dp[i - 1][2 * j - 1] - prices[i]);
                dp[i][2 * j + 1] =
                    max(dp[i - 1][2 * j + 1], dp[i - 1][2 * j] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2 * k - 1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值