123.买卖股票的最佳时机III
题目链接:买卖股票的最佳时机III
题目描述:给定一个数组,它的第 **
i
个元素是一支给定的股票在第i
**天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
动态规划:
主要是要进行状态拆分
动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[i][0] 表示第i天第一次持有股票所得最多现金 。
dp[i][1] 表示第i天第一次不持有股票所得最多现金 。
dp[i][2] 表示第i天第二次持有股票所得最多现金 。
dp[i][3] 表示第i天第二次不持有股票所得最多现金 。 - 确定递推公式
-
如果第i天第一次持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就第一次持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
- 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
-
如果第i天第一次不持有股票即dp[i][1], 也可以由两个状态推出来
- 第i-1天就第一次不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
-
如果第i天第二次持有股票即dp[i][2], 那么可以由两个状态推出来
- 第i-1天就第二次持有股票,继续维持dp[i - 1][2]
- 第i-1天第一次不持有股票,prices[i] + dp[i - 1][1]
同样dp[i][2]取最大的,dp[i][2] = max(dp[i - 1][2], prices[i] + dp[i - 1][1]);
-
如果第i天第二次不持有股票即dp[i][3], 也可以由两个状态推出来
- 第i-1天就第二次不持有股票,那么就保持现状,dp[i - 1][3]
- 第i天卖出股票,第二天持有股票加上当日股价,得现金即:prices[i] + dp[i - 1][2]
-
- dp数组如何初始化
dp[0][0]和dp[0][2]第0天不管第几次持有都是-prices[0]因为可以买完卖,然后再买。
dp[0][1]和dp[0][3]第0天不管第几次不持有都是0 - 确定遍历顺序
从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。
class Solution {
public:
int maxProfit(vector<int>& prices) {
vector<vector<int>> dp(prices.size(), vector<int>(4, 0));
dp[0][0] = -prices[0];
dp[0][2] = -prices[0];
for (int i = 1; i < prices.size(); i++) {
dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] - prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] + prices[i]);
}
return dp[prices.size()-1][3];
}
};
188.买卖股票的最佳时机IV
题目链接:买卖股票的最佳时机IV
题目描述:给你一个整数数组
prices
和一个整数k
,其中prices[i]
是某支给定的股票在第i
**天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成
k
笔交易。也就是说,你最多可以买k
次,卖k
次。**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
动态规划:
这个题目就是上个题目的扩展,把2扩展到k。其他的题目都一样,具体实现就是加上了个循环在k遍历。
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
vector<vector<int>> dp(prices.size(), vector<int>(2 * k, 0));
for (int i = 0; i < k; i++) {
dp[0][i * 2] = -prices[0];
}
for (int i = 1; i < prices.size(); i++) {
dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
for (int j = 1; j < k; j++) {
dp[i][2 * j] =
max(dp[i - 1][2 * j], dp[i - 1][2 * j - 1] - prices[i]);
dp[i][2 * j + 1] =
max(dp[i - 1][2 * j + 1], dp[i - 1][2 * j] + prices[i]);
}
}
return dp[prices.size() - 1][2 * k - 1];
}
};