Universal adversarial perturbations(CVPR 2017)
啦啦啦,为了方便大家食用代码,我还改写了pytorch版本供大家学习,如果大家觉得有帮助记得帮我点个star哦!嘻嘻。
- 文章简介:
本文主要是介绍了一种universal的扰动,能让大部分图片加入该噪声后就能被误分类,扰乱一个新的数据点只需要向图像添加一个普遍的扰动(不需要解决优化问题/梯度计算)。其示意图如下

- Norm:
- 2-范数: ξ = 2000 \xi=2000 ξ=2000
- 无穷范数: ξ = 10 \xi=10 ξ=10
结果如下:其中的Val.是不参与universal扰动的计算的,可以看到性能相当好

-
Contribution:
- 证明了state-of-the-art模型中存在universal image-agnostic扰动
- 提出了一种寻找universal扰动的算法
- 发现universal扰动有一定的泛化能力:只用一个非常小的training points就能愚弄一张新图像
- 我们证明这种扰动不仅在图像上是普遍存在的,而且在深度神经网络上也能很好地推广。因此,这种扰动在数据和网络体系结构方面具有双重普遍性。
- 通过研究决策边界不同部分之间的几何相关性,解释和分析了深度神经网络对普遍扰动的高脆弱性。
-
目标函数


其中
μ
\mu
μ是图像的分布,
v
v
v是我们要加的universal扰动
更详细地说,如果当前的
v
v
v不足够扰动
x
i
x_i
xi,就会再去寻找一个
Δ
v
\Delta v
Δv,其要解决的优化问题为

为了满足
∣
∣
v
∣
∣
p
≤
ξ
||v||_p \leq \xi
∣∣v∣∣p≤ξ约束,作者将
v
+
Δ
v
i
v+\Delta v_i
v+Δvi投影到一个半径为
ξ
\xi
ξ的
l
p
\mathcal{l}_p
lpball上,具体为:
下面该式返回的是
v
′
v'
v′, 其实简单地说,其实就是用一个个半径为
ξ
\xi
ξ的
l
p
\mathcal{l}_p
lpball去尽量接近
v
v
v。[注意这个ball不是圆形球的意思]

有趣的是,在实际操作中, X X X中数据点 m m m的数量并不需要很大就足够一个对整个分布 u u u有效的普遍扰动。最终算法为:

- Universal扰动
- 同一网络的不同初始化得到的扰动结果不唯一,虽然有点相似
- 不同网络得到的扰动结果也不一样


-
The size of training set:
- 如果用于计算扰动的训练集只有500张图,则可以成功攻击验证集中30%的图片
- 如果用于计算扰动的训练集有1000张图,则可以攻击在验证集中更多的未见过的图片,甚至在这1000张图中都没有出现过那个类别的图片
-
Cross-model universality:
证明了本文提出的universal扰动是doubly-universal

-
Adversarial trainning robust
作者将VGG-F模型进行fine-tune,即原训练集有50%的概率被加上universal扰动,然后训练了5个epoch。训练完后,再用Algorithm 1在fine-tune后的模型上计算universal扰动,结果在验证集上的成功率从93.7%到了76.2%。为了试验多次fine-tune的用处,作者又重复了上面这个流程,从10个另外的扰动继续进行fine-tune,但是后面再进行攻击时,成功率差不多还有80%,所以有一个结论: 简单地处理无法对small universal扰动形成一定的免疫能力 -
奇异值:
奇异值的通俗理解(转自知乎):奇异值往往对应着矩阵中隐含的重要信息,且重要性和奇异值大小正相关。每个矩阵A都可以表示为一系列秩为1的“小矩阵”之和,而奇异值则衡量了这些“小矩阵”对于A的权重。
作者计算了N矩阵与随机矩阵的奇异值:


对这个图我是这么理解的:Index表示的是奇异值的排序位数,理所因当,第1个特征值最大,后面递减。可以发现的是,在曲线的开始阶段,奇异值的变化幅度特别大,到了后面,曲线变得平稳。这就说明对于深度网络而言,他的决策边界存在一定的相关性和冗余性。
- Hypothesize:
- 存在一个低维子空间 S \mathcal{S} S包含自然图像周围区域中到决策边界的大部分法向量。

为了验证这个假设,作者选取了前100个特征向量所张成的子空间 S \mathcal{S} S,然后从中选择随机向量( ξ = 2000 \xi = 2000 ξ=2000),发现居然能够攻击38%的图片,从而验证了假设(因为原始空间生成的随机扰动只能攻击10%的图片)
如果觉得我有地方讲的不好的或者有错误的欢迎给我留言,谢谢大家阅读(点个赞*我可是会很开心的哦)~