服务器管理——SSH远程会话管理工具screen

有小伙伴反应,在服务器上跑程序,不知何原因,突然连接终端,为了解决这个问题,在这里介绍一个SSH远程会话管理工具screen。1.screen介绍screen是一个可以在多个进程之间多路复用一个物理终端的全屏窗口管理器。screen中有会话的概念,用户可以在一个screen会话中创建多个scree...

2017-12-02 20:30:39

阅读数 632

评论数 0

ubuntu下使用sublime text3搭建Python IDE

之前写在ubuntu下用sublime写代码,然后再用命令行运行python代码时,总是被小伙伴嘲笑,索性借着周末,参看网上教程,在现有sublime text3基础上搭建Python IDE,具体过程参考:http://www.cnblogs.com/unflynaomi/p/5704293.h...

2017-09-24 08:26:27

阅读数 2216

评论数 0

ubuntu14.04安装LaTex2017及TexStudio

1.安装包准备TeXLive 的版本是 2017,可以从官方站点下载安装包, 。2.TeXLive2017安装sudo apt-get install perl sudo apt-get install perl-tk进入texlive2017安装包所在目录,执行以下命令安装texlive:sud...

2017-09-11 15:41:54

阅读数 2226

评论数 0

Robust PCA——Inexect ALM

前两篇博客已经介绍了Robust PCA及RPCA的优化,接下来用Robust PCA实现背景建模。背景建模就是将摄像机获取的场景分离出前景和背景,以获取场景中的动态目标。传统方法基本思路:首先通过学习一段训练图像序列提取出该视频的背景特征,来建立数学模型以便描述其背景,然后用该背景模型对需要检测...

2017-09-07 20:12:02

阅读数 2574

评论数 1

Rubost PCA 优化

最近一直在看Robust PCA做背景建模的paper, 顺便总结了一下了Robust PCA.前面一篇博客介绍了PCA与Robust PCA区别,本篇博客总结Robust PCA 常见的优化方法,欢迎交流学习.在这里强烈推荐一篇Rachel Zhang的Robust PCA 学习笔记.

2017-09-03 13:08:08

阅读数 1992

评论数 1

PCA 与 Robust PCA区别

之前的一篇博客对PCA的原理、特点进行了介绍以及用python实现了PCA。本篇博客对PCA和Robust PCA进行简单的区别。1.PCA主成分分析(PCA)可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,能将原有的复杂数据进行降维。最简单的主成分分析方法就是PCA,从线性代数的角度...

2017-09-02 10:25:26

阅读数 5820

评论数 1

Pytorch入门——神经网络

上一篇博客对Pytorch包中的变量和梯度有了初步了解,接下来进入正题——用Pytorch中的torch.nn包实现神经网络。1.Pytorch实现神经网络的典型训练过程在这里以Lenet模型为例,由两个卷积层,两个池化层,以及两个全连接层组成。 卷积核大小为5*5,stride为1,采用MAX池...

2017-09-01 17:39:05

阅读数 2936

评论数 0

主成分分析(PCA)

昨天看Robust Principal Component Analysis时,想起了上学习学习的PCA,在这里参考Peter Harrington的《机器学习实战》整理了上学期学习的PCA算法法(原理+Python实现),欢迎小伙伴们交流。 1.PCA原理 PCA是线性代数里面的K-L变...

2017-08-31 10:40:37

阅读数 760

评论数 0

Pytorch入门——Autograd:自动分化

在上一篇博客已经对Pytorch的Tensor进行了快速介绍,本章将继续学习autograd包。autograd包是PyTorch所有神经网络的核心,为Tensors上的所有操作提供了自动区分。同时,它也是一个逐个运行的框架,意味着backprop由代码运行定义,每一次迭代都可以不同,下面进行一一...

2017-08-30 00:32:00

阅读数 8930

评论数 1

Pytorch入门——Tensor

欢迎使用Markdown编辑器写博客在之前的博客已经对Pytorch进行了介绍及安装,接下来正式学习Pytorch,本章博客主要介绍torch Tensor、torch Tensor与numpy array的转化以及运算操作。1.TensorTensor类似于numpy的ndarrays,另外它还...

2017-08-24 15:49:43

阅读数 4794

评论数 0

k-近邻算法(kNN)

k-近邻算法(kNN)最近假期,参考李航的《统计学习方法》和Peter Harrington的《机器学习实战》整理了之前学习的机器学习算法(原理+python实现),欢迎小伙伴们交流。kNN原理k近邻算法比较简单、直观,简单的说就是采用测量不同的特征值之间的距离方法进行分类,也就是给定一个训练数据...

2017-08-17 16:20:34

阅读数 407

评论数 0

CVPR 2017论文

近期在看CVPR2017的文章,顺便就把CVPR2017整理一下,分享给大家,更多的 Computer Vision的文章可以访问Computer Vision Foundation open access、CVPapers。Machine Learning 1Spotlight 1-1AExcl...

2017-08-16 10:21:49

阅读数 4751

评论数 0

ubuntu14.04下安装matlab2014a

1.下载安装包及破解包 从百度网盘上下载安装包及破解包,注意安装包需要解压后再合并创建iso镜像。 2.创建挂在点及挂载 $ sudo mkdir /media/matlab $ sudo mount -o loop /path/R2014a.iso /media/matlab 注...

2017-05-21 16:11:46

阅读数 549

评论数 0

Pytorch入门——安装

Pytorch目前支持的平台有Linux和OSX,在Pytorch官网上每种平台提供了conda、pip、source三种安装方式,同时也可以根据有无GPU进行cuda安装,在这里以ubuntu14.04进行安装学习。1. Anaconda安装配置 安装过程参考我之前的Anaconda+Ten...

2017-05-19 20:35:52

阅读数 70600

评论数 2

Pytorch入门——概述

本来一直用tensorflow做深度学习,最近在莫烦python中看到了Pytorch的教程,同时在知乎上看到了讨论Pytorch的帖子,就跟着教程结合Pytorch官方提供的教程学习Pytorch。1.Pytorch简介Pytorch是Facebook 的 AI 研究团队发布了一个 Python...

2017-05-19 13:25:20

阅读数 14234

评论数 0

ROS总结——录制和回放数据

ROS录制和回放数据本博客将总结如何通过rosbag将ROS系统运行过程中的数据录制到一个.bag文件中,然后通过回放数据来重现相似的运行过程。 1. 录制数据 本节将记录ROS系统运行时的话题数据,记录的话题数据将会累积保存到bag文件中。 首先,在三个不同的窗口中分别执行一下命令产生数据...

2017-05-18 09:55:40

阅读数 8585

评论数 0

ROS总结——ROS服务器和客户端

服务器和客户端 (C++) 上一个博客总结了ROS消息发布和订阅,本博客将继续总结ROS如何用 C++ 编写服务器节点和客户端节点。 1. 编写ROS服务器节点 在这里,将创建一个简单的service节点(“add_two_ints_server”),该节点将接收到两个整形数字,并返回它们的...

2017-05-18 09:08:18

阅读数 3220

评论数 1

ROS总结——ROS消息发布和订阅

消息发布器和订阅器 (C++)本博客总结绍如何用 C++ 编写消息发布器节点和订阅器节点。1.编写发布器节点 节点(Node) 是指 ROS 网络中可执行文件。接下来,将会创建一个发布器节点(“talker”),它将不断的在 ROS 网络中广播消息。切换到之前创建的 beginner_tutor...

2017-05-18 00:53:21

阅读数 6222

评论数 2

OpenAI Gym学习

记录和上传结果前面三篇博文介绍了OpenAI Gym安装、使用以及基本环境。接下来介绍如何在OpenAI Gym平台测试自己的强化学习的算法,可以轻松地记录自己算法在环境中的表现,以及拍摄自己算法学习的视频,只需使用Monitor Wrapper包装自己的环境,如下所示:import gym fr...

2017-05-11 00:24:46

阅读数 10199

评论数 0

OpenAI Gym学习

观察(Observations)上篇博客介绍了使用OpenAI Gym的CartPole(倒立摆)的demo,如果想要在每个步骤中做出比采取随机行动更好的行动,那么实际了解行动对环境的影响可能会很好。 环境的step 函数返回需要的信息,step 函数返回四个值observation、rewar...

2017-05-10 23:41:17

阅读数 8979

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭