[paper]Universal adversarial perturbations

该论文探讨了一种计算普遍对抗扰动的算法,这些扰动能对神经网络模型产生广泛影响,揭示了模型决策边界的高维几何特性。研究发现,存在单一的输入空间方向可能导致模型对多数自然图像分类错误,且这种扰动在不同网络间具有良好的泛化性。通过对决策边界的奇异值分析,证明了边界存在相关性和冗余性,暗示了一个低维子空间包含大部分法向量。

本文提出了计算自然图像中普遍扰动的算法,在神经网络上具有很好的泛化性,并且揭示了模型在高维空间中决策边界的几何联系。并且说明了在输入空间中存在单个方向的潜在安全漏洞,攻击者可能会利用这些漏洞造成模型对大多数自然图像分类错误。

universal 算法:
在这里插入图片描述
μ\muμ是图像分布
vvv是universal扰动
k^\hat{k}k^是模型

universal扰动vvv需要满足两个条件:
在这里插入图片描述
ξξ

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值