本文提出了计算自然图像中普遍扰动的算法,在神经网络上具有很好的泛化性,并且揭示了模型在高维空间中决策边界的几何联系。并且说明了在输入空间中存在单个方向的潜在安全漏洞,攻击者可能会利用这些漏洞造成模型对大多数自然图像分类错误。
universal 算法:

μ\muμ是图像分布
vvv是universal扰动
k^\hat{k}k^是模型
universal扰动vvv需要满足两个条件:

ξξ
该论文探讨了一种计算普遍对抗扰动的算法,这些扰动能对神经网络模型产生广泛影响,揭示了模型决策边界的高维几何特性。研究发现,存在单一的输入空间方向可能导致模型对多数自然图像分类错误,且这种扰动在不同网络间具有良好的泛化性。通过对决策边界的奇异值分析,证明了边界存在相关性和冗余性,暗示了一个低维子空间包含大部分法向量。
本文提出了计算自然图像中普遍扰动的算法,在神经网络上具有很好的泛化性,并且揭示了模型在高维空间中决策边界的几何联系。并且说明了在输入空间中存在单个方向的潜在安全漏洞,攻击者可能会利用这些漏洞造成模型对大多数自然图像分类错误。
universal 算法:

μ\muμ是图像分布
vvv是universal扰动
k^\hat{k}k^是模型
universal扰动vvv需要满足两个条件:

ξξ
1423
935
842
3290

被折叠的 条评论
为什么被折叠?