Codeforces Round #666 (Div. 1) C. Monster Invaders

题目链接

一、题意

有3种武器,取名为\dpi{150}1,2,3,使用一次每个武器的时间分别是r1,r2,r3

n个关卡,从第i关到第i+1关或第i-1关需要时间d

i关有a_i个小怪,每个小怪有1点血。

每关有一个大怪,每个大怪有2点血。

你只有杀死所有小怪才能去打大怪。

武器1每次只能减少一个怪物的一点血。

武器2每次能减少所有怪物的一点血。使用一次武器2后被迫移动到相邻的关卡,可以自已选择是i-1i+1

武器3每次能杀死一个怪物。

一个怪物的血量是0或者负数代表死去。

初始时位于第1关,问杀死所有怪物的最少时间。

数据范围:2 \leqslant n \leqslant 10^6 , 1 \leqslant r1 \leqslant r2 \leqslant r3 \leqslant 10^9 , 1 \leqslant d \leqslant 10^9, 1\leqslant a_i \leqslant 10^6

二、题解

把一个关卡的怪物全部杀死有以下三种情况。

(1)使用 a_i 次武器 1 和 1 次武器 3

(2)使用 1 次武器 2,移动到相邻关卡,再回去使用 1 次武器 1

(3)使用 a_i+1 次武器 1 和,移动到相邻关卡,再回去使用 1 次武器 1

dp[i][1] 表示到达过的最远关卡是第i关,且当前在第i关,前i-1关的怪物全部杀死,第i关的大怪剩余血量是1的最少时间。

dp[i][1] 表示到达过的最远关卡是第i关,且当前在第i关,前i-1关的怪物全部杀死,第i关的大怪剩余血量是0的最少时间。

转移就直接枚举上面的情况即可。

注意杀死所有怪物时不一定在第n关,有可能在第n-1关。需要特判。

三、代码

#include<bits/stdc++.h>
#define pb push_back
#define fi first
#define se second
#define sz(x)  (int)x.size()
#define cl(x)  x.clear()
#define all(x)  x.begin() , x.end()
#define rep(i , x , n)  for(int i = x ; i <= n ; i ++)
#define per(i , n , x)  for(int i = n ; i >= x ; i --)
#define mem0(x)  memset(x , 0 , sizeof(x))
#define mem_1(x)  memset(x , -1 , sizeof(x))
#define mem_inf(x)  memset(x , 0x3f , sizeof(x))
#define debug(x)  cerr << #x << " = " << x << '\n'
#define ddebug(x , y)  cerr << #x << " = " << x << "   " << #y << " = " << y << '\n'
#define ios std::ios::sync_with_stdio(false) , cin.tie(0)
using namespace std ;
typedef long long ll ;
typedef long double ld ;
typedef pair<int , int> pii ;
typedef pair<ll , ll> pll ;
typedef double db ;
const int mod = 998244353 ;
const int maxn = 1e6 + 10 ;
const int inf = 0x3f3f3f3f ;
const double eps = 1e-6 ; 
int n ;
ll a[maxn] ;
ll r1 , r2 , r3 , d ;
ll dp[maxn][2] ;
int main()
{
    ios ;
    //1. a[i] * r1 + r1 + 2 * d + r1
    //2. a[i] * r1 + r3
    //3. r2 + 2 * d + r1
    cin >> n >> r1 >> r2 >> r3 >> d ;
    rep(i , 1 , n)  cin >> a[i] ;
    dp[1][0] = a[1] * r1 + r3 ;
    dp[1][1] = min(a[1] * r1 + r1 , r2) ;
    rep(i , 2 , n)
    {
        dp[i][0] = min({dp[i - 1][0] + d + a[i] * r1 + r3 , dp[i - 1][1] + d + a[i] * r1 + r3 + d + r1 + d , dp[i - 1][1] + d + min(a[i] * r1 + r1 , r2) + d + r1 + d + r1}) ;
        dp[i][1] = min(dp[i - 1][0] + d + min(a[i] * r1 + r1 , r2) , dp[i - 1][1] + d + min(a[i] * r1 + r1 , r2) + d + r1 + d) ;
    }
    cout << min(dp[n][0] , dp[n - 1][1] + d + a[n] * r1 + r3 + d + r1) << '\n' ;
    return 0 ;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值