seismicunix基础-声波波动方程推导

seismicunix基础-声波波动方程推导


接触波动方程的研究人员都绕不开这个公式,这是在一维状态下波动方程

在这里插入图片描述

但是对于这个方程是怎样来的很少有人能说清楚,其中涉及到牛顿第二运动定律,物体的加速度与受到的力有关。
假设一维弦是大量紧密连接的质点,某个质点受力开始震动后,附近的质点无损耗地将这个力传导出去,由此造成了弦有规律地振动。

首先我们可以假设在原点处的质点受力开始震动,在t时刻时其振幅值为y=f(t),该振动以速度v向x轴方向传播,那么在t时刻距原点x位置处的质点振幅值为f(t-x/v),x处的振动比原点慢x/v时间。
在这里插入图片描述
用一个函数u(x,t)来表示弦上任意位置质点在任意时刻的振幅值,那么我们可以得到
在这里插入图片描述
令z=t-x/v,对方程关于t求一阶偏导,可以得到
在这里插入图片描述
在这里插入图片描述
对方程关于t求二阶偏导
在这里插入图片描述
对方程关于x求一阶偏导,可以得到
在这里插入图片描述
在这里插入图片描述
对方程关于x求二阶偏导,
在这里插入图片描述
在这里插入图片描述
将方程关于时间t和位置x的二阶导方程联立,可得
在这里插入图片描述
由此得到开头的齐次方程。

将该方程推广至二维,一维弦由单个质点紧密连接形成,二维膜则由平面上平铺的质点紧密形成,膜上某点受力振动后周围的点由于牛顿第二运动定律的作用,会将振动传导出去,由此造成膜的震动。
在这里插入图片描述
同样的,我们可以假设膜在原点处的质点受力开始震动,在t时刻时其振幅值为amp=f(t),该振动以速度v向xy平面内传播,那么在t时刻距原点在这里插入图片描述位置处的质点振幅值为在这里插入图片描述,该处的振动比原点慢在这里插入图片描述时间。
用一个函数u(x,y,t)来表示膜上任意位置质点在任意时刻的振幅值,那么我们可以得到
在这里插入图片描述
对方程分别关于时间t,空间x,y求二阶偏导,可得
在这里插入图片描述
推广至三维,则可以得到三维波动方程
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值