【算法学习笔记】10.数据结构基础 二叉树初步练习3(遍历与递归复习)

本文通过汉诺塔问题回顾了递归法,指出递归的基础步骤,并探讨了二叉树的层序遍历。接着,文章重点讨论了如何根据前序和中序遍历确定后序遍历的结果,这是一个涉及深度递归理解的问题。
摘要由CSDN通过智能技术生成

首先先来复习一下递归法解决问题。引例就用十分经典的汉诺塔问题。

先用数学归纳法,算出n个盘子所需要的最少步骤为2^n-1次。(动态规划的数学基础是数学归纳法,此处的递归也有某种通性)

递归时要考虑最基础的步骤,那就是分三步。

第一步,将上面的n-1个盘子从A移到B

第二步,将第n个盘子从A移到C

第三部,将那n-1个盘子从B移到C

所以可以写出递归函数

//a 起始  b 临时 c 终点   注意 此abc非彼ABC
void move(int t,char a,char b,char c)
{
	if(t==1)	//只有1个时要单独判断
 		printf("%d from %c to %c\n",t,a,c);
	else
	{
		move(t-1,a,c,b);//先把t-1放到临时
		printf("%d from %c to %c\n",t,a,c);//从起始到终点
		move(t-1,b,a,c);//把t-1取回,放到终点
	}
}

接着我们来看看遍历二叉树的最基础的四个方式

1.BFS 层序遍历 (宽度优先遍历)

此时用到的方法是利用队列收集并排序所要输出的节点。

int bfs()
{
	queue<int> q;
	q.push(root);//首先要把根节点push进
	int i=0;//用来向ans中加入输出队列
	while(!q.empty())//当队列非空时
	{
		int t=q.front();//先把队首元素保存起来
		q.pop();//把front存起来之后即可抛弃
		if(nodes[t]==0) return 0;//失败 
		ans[i++]=nodes[t];//存入队首元素
	 	if(left[t])//当前节点有左儿子 
	 		q.push(left[t]);//存入
 		if(right[t])//当前节点有右儿子 
	 		q.push(right[t]);//存入
	}
	return 1;
}
//宽度优先遍历bfs 
int bfs()
{
	cnt=0;
	queue<Node*> q;
	q.push(root);
	while(!q.empty())
	{
		Node* u = q.front();
		q.pop();
		if(!u->hv) return 0;//没有被赋值
	 	ans[cnt++]=u->v;
	 	if(u->l!=NULL) q.push(u->l);
	 	if(u->r!=NULL) q.push(u->r);
	}
	return 1;
}

2.前序 中序 后序 (均用递归实现,代码类似)

void PreOrder(int node)
{
	if(node==0)	//到了尽头
		return;
	cout<<node<<" ";
	PreOrder(l[node]);
	PreOrder(r[node]);
}
最后三行代码的顺序决定了输出节点的时机,不同的递归结果使得最后的遍历效果分别不同。


重点来了,那就是根据前序和中序 确定后序的结果

例如 DBACEFG ABCDEFG 输出 ACBFGED

此时的递归较为难以理解

char s1[255],s2[255],ans[255];
//s1是当前的前序 s2是中序 s是用于当前树的后序存储 
void build(int n,char* s1,char* s2,char* s)
{
	if(n<=0)	return;            //p=0时 说明已到达左终点 n-p-1<=0是说明已到达右终点 
	                                       //用p记录根节点在中序遍历中的位置(0是第一位) 此时p也同时表示了左子树的节点数
	                                     //n-1-p是右子树的节点数 
	int p=strchr(s2,s1[0])-s2;                         //s2是s2[0]的指针地址
	                                         //对前p个元素(上一节点的左子树)进行后序遍历重建
	build(p,s1+1,s2,s) ;     //因为参数n是p所以不会打扰右字数的排列 到了尽头就返回 
	                                        //对后n-1-p个元素(上一节点的右子树进行后序遍历重排)
 	build(n-1-p,s1+p+1,s2+p+1,s+p);                   //s+p因为前p个元素是左子树写过了的  
	s[n-1]=s1[0];                             //把每个树的根节点写到后序遍历的最后一个位置 
}

int main()
{	
	cin>>s1>>s2; 
	int n=strlen(s1);
	build(n,s1,s2,ans);
	ans[n]='\0';
	cout<<ans;  
}
暂时的递归就理解到如此吧,相信以后的学习会更加深入地理解的




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值