[BZOJ2131]免费的馅饼-树状数组优化DP

说在前面

真的…好困啊…!
晚自习时间的日常犯困=A=


题目

BZOJ2131传送门

题意

一个竖直的二维平面里,有宝物不断地从上面掉下来。第i个宝物下降到平面底部的时间为ti,位置为pi,宝物价值为vi。
你作为一个玩家,要在这个竖直平面的底部接住足够的宝物来获取最高的价值。你可以在平面底部移动,并且你的速度最大为:2单位/单位时间。初始时间你可以在平面底部的任意一个位置。
现在给定上述所有信息,需要求出可获得的最大价值。

输入&&输出

第一行输入平面底部宽度W(≤1e8)和宝物个数N(≤1e5)
接下来N行每行三个整数ti,pi,vi,含意同上

输出最大价值


解法

看到W这种范围,大概猜到要么是O(n)题,要么就是和W没什么关系…

然后这是一道DP题【显然】
定义dp[i][j]表示第i个物品落下时,在j位置可获得最大价值。
很容易看出来

dp[i][j]=max(dp[i1][k])+v[i]     ( |jk|2Δt )

然后发现第一维可以不要,存坐标就可以了,每次可以在原来的基础上更新。
但是这个更新条件很奇怪,带有绝对值,于是咱们把绝对值拆开,然后再移项。对于两个物品i,j来说(假设i在j之后落下),如果j可以转移到i,则有
{2t[j]+pos[j]2t[i]+pos[i]2t[j]pos[j]2t[i]pos[i]

可以发现,每个物品相当于有两个值。j的两个值都小于i时就可以转移。
把其中的某一个权值排序,然后用树状数组(或者线段树)维护另一个权值就好了(这里需要离散化)。
每次转移都是前缀最大值进行转移。

所以这题和那个1e8的W并没有丝毫的关系。dp[i]也不是代表的在某位置的最优解了,而是某个值(2*t-p或者2*t+p)的最优解。


自带大常数的代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

int W , N , uninum ;
struct Data{
    int t , p , v ;//a = 2 * t + p ; sort by a
    int a , b ;    //b = 2 * t - p ; query by b
    bool operator < ( const Data &A ) const {
        return a < A.a ;
    }
}o[100005] ;
struct Unique_Data{
    int b , id ; //b = 2 * t - p ;
    bool operator < ( const Unique_Data &A ) const {
        return b < A.b ;
    }
}uni[100005] ;

class BIT{
    public :
        void updata( int x , int delta ){
            for( ; x <= uninum ; x += x&-x )
                num[x] = max( num[x] , delta ) ;
        }
        int Query( int x ){
            int rt = 0 ;
            for( ; x ; x -= x&-x ) rt = max( rt , num[x] ) ;
            return rt ;
        }
        void init(){
            memset( num , 0 , sizeof( num ) ) ;
        }
    private :
        int num[100005] ;
}B;

void Unique_(){
    sort( uni + 1 , uni + N + 1 ) ;
    uni[0].b = -2147483647 ;
    for( int i = 1 ; i <= N ; i ++ ){
        if( uni[i].b != uni[i-1].b ) uninum ++ ;
        o[ uni[i].id ].b = uninum ;
    }
}

void solve(){
    sort( o + 1 , o + N + 1 ) ; B.init() ;
    for( int i = 1 ; i <= N ; i ++ )
        B.updata( o[i].b , B.Query( o[i].b ) + o[i].v ) ;
    printf( "%d" , B.Query( uninum ) ) ;
}

int main(){
    scanf( "%d%d" , &W , &N ) ;
    for( int i = 1 ; i <= N ; i ++ ){
        scanf( "%d%d%d" , &o[i].t , &o[i].p , &o[i].v ) ;
        o[i].a = 2 * o[i].t + o[i].p ;
        uni[i].b = 2 * o[i].t - o[i].p ;
        uni[i].id = i ;
    }
    Unique_() ;
    solve() ;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值