[UOJ#348]-[WC2018]州区划分-FMT

19人阅读 评论(0) 收藏 举报
分类:

说在前面

luogu什么情况= =
me就交了三次,还都被卡常了
再交了一遍就直接全部返回RE了?合着以为me是在卡评测吗……?
然后就去UOJ上过了这题……
luogu差评*1


题目

UOJ#348传送门
看题可戳传送门


解法

之前去WC的时候还不会FWT(或者FMT,反正都不会),于是考场上只写了3n做法
(还记得当时,怎么都过不了样例的绝望hhhh)
嗯!然后现在把这个坑给填了

首先根据题意,可以写出一个很显然的dp,就是:dp[k][s]=ij[i+js] dp[k1][i](sum[j]sum[s])pdp[k][s]表示分了k个州,选择的城市集合为s时,满意度乘积的和。i+js的意思是,ij无交,且ijs。其中需要保证j是一个合法的划分,这个可以预处理

可以发现,第一维并没有什么卵用。因为最终我们想要的,不是分组怎么样,而是只要分组合理就可以了。所以可以把第一维省掉

然后就变成了这样:dp[s]=ij[i+js] dp[i](sum[j]sum[s])p

化简一下变成了这样:sum[s]pdp[s]=ij[i+js] dp[i]sum[j]p

发现这已经是一个很明显的子集卷积的形式,于是把数组按二进制1的个数拆开,然后做FMT即可

这时候,如果你觉得,这是一个自己和自己卷积的形式,因此无法做拆位FMT的话……那么恭喜你!你和me一样蠢……QAQ
因为这个dp式子,虽然看起来是自己和自己卷,然而如果把拆位的那一维也写出来,就可以发现,其实已经形成了普通的子集卷积形式,因此是可以直接按照顺序求的


下面是自带大常数的代码

#include <map>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

const int P = 998244353 ;
int N , M , px , sumw[1<<21] ;
int Fstate , acce[25] , sum[22][1<<21] , dp[22][1<<21] ;
short popcnt[1<<21] ;
map<int,int> bi ;

long long s_pow( long long x , int b ){
    long long rt = 1 ;
    while( b ){
        if( b&1 ) rt = rt * x %P ;
        x = x * x %P , b >>= 1 ;
    } return rt ;
}

int vis ;
void dfs( int S , int u ){
    vis |= ( 1 << u ) ;
    for( int v = acce[u] ; v ; v -= v&-v )
        if( ( S & (v&-v) ) && !( vis & (v&-v) ) ) dfs( S , bi[v&-v] ) ;
}

void check( int S ){
    vis = 0 ;
    int ok = 0 ;
    for( int i = 0 ; i < N ; i ++ ){
        if( !( S & ( 1 << i ) ) ) continue ;
        if( popcnt[ S&acce[i] ] & 1 ){ ok = 1 ; break ; }
    } if( !ok ) dfs( S , bi[S&-S] ) ;
    if( ok || popcnt[vis] != popcnt[S] ){
        if( px == 0 ) sum[popcnt[S]][S] = 1 ;
        else if( px == 1 ) sum[popcnt[S]][S] = sumw[S] ;
        else sum[popcnt[S]][S] = sumw[S] * sumw[S] ;
    }
}

void preWork(){
    Fstate = ( 1 << N ) - 1 ;
    for( int i = 0 ; i <= N ; i ++ ) bi[1<<i] = i ;
    for( int i = 1 ; i <= Fstate ; i ++ ){
        popcnt[i] = popcnt[ i^(i&-i) ] + 1 ;
        sumw[i] = sumw[ i^(i&-i) ] + sumw[i&-i] ;
    } for( int i = 1 ; i <= Fstate ; i ++ ) check( i ) ;
}

void FMT( int *a ){
    for( int i = 0 ; i < N ; i ++ )
        for( int j = 0 ; j <= Fstate ; j ++ )
            if( j&(1<<i) ) a[j] = ( a[j] + a[j^(1<<i)] )%P ;
}

void IFMT( int *a ){
    for( int i = 0 ; i < N ; i ++ )
        for( int j = 0 ; j <= Fstate ; j ++ )
            if( j&(1<<i) ) a[j] = ( a[j] - a[j^(1<<i)] )%P ;
}

void solve(){
    for( int i = 1 ; i <= N ; i ++ ) FMT( sum[i] ) ;
    for( int i = 0 ; i <= Fstate ; i ++ ) dp[0][i] = 1 ;

    for( int i = 1 ; i <= N ; i ++ ){
        int *g = dp[i] ;
        for( int j = 0 ; j < i ; j ++ ){
            int *f = dp[j] , *q = sum[i-j] ;
            for( int r = 0 ; r <= Fstate ; r ++ )
                g[r] = ( g[r] + 1LL * f[r] * q[r] )%P ;
        } IFMT( g ) ;
        if( px ) for( int r = 0 ; r <= Fstate ; r ++ ){
            if( popcnt[r] != i ) continue ;
            long long tmp = s_pow( sumw[r] , P - 2 ) ;
            if( px == 2 ) tmp = tmp * tmp %P ;
            g[r] = tmp * g[r] %P ;
        } if( i != N ) FMT( g ) ;
    } printf( "%d" , ( dp[N][Fstate] + P )%P ) ;
}

int main(){
    scanf( "%d%d%d" , &N , &M , &px ) ;
    for( int i = 1 , u , v ; i <= M ; i ++ ){
        scanf( "%d%d" , &u , &v ) ;
        u -- , v -- ;
        acce[u] |= ( 1 << v ) ;
        acce[v] |= ( 1 << u ) ;
    } for( int i = 0 ; i < N ; i ++ )
        scanf( "%d" , &sumw[1<<i] ) ;
    preWork() ; solve() ;
}

查看评论

[FMT] WC2018.州区划分

令 fi,Sfi,Sf_{i,S} 表示选择了 iii 个城市进行划分,选择的城市集合为 SSS 的答案 那么 fi,S=∑fj,s×gS⊕sfi,S=∑fj,s×gS⊕sf_{i,S}=\sum ...
  • Coldef
  • Coldef
  • 2018-02-10 14:47:28
  • 339

UOJ#348. [WC2018]州区划分(FMT)

传送门 题解: 显然的DP :g[S]f[S]=∑i∈Sf[S⊕i]g[i]g[S]f[S]=∑i∈Sf[S⊕i]g[i]g[S] f[S]=\sum_{i\in S} f[S\oplus i]g...
  • qq_35649707
  • qq_35649707
  • 2018-02-18 16:39:01
  • 114

【UOJ348】【WC2018】州区划分 状压DP FWT

题目大意   给定⼀个nnn个点的⽆向图,对于⼀种nnn个点的划分{S1,S2,…,Sk}{S1,S2,…,Sk}\{S_1,S_2,\ldots,S_k\},定义它是合法的,当且仅当每个点都在其中...
  • ez_yww
  • ez_yww
  • 2018-02-12 09:24:29
  • 223

[WC2018]州区划分(子集卷积)

传送门 首先我们可以列个dp方程出来: dpS=(1wS)p∑T⊆SdpT∗(wS−T)pdpS=(1wS)p∑T⊆SdpT∗(wS−T)pdp_S=({\frac 1 {w_{S}}})^p \...
  • stone41123
  • stone41123
  • 2018-02-20 22:42:20
  • 219

[LCT] WC2018. 即时战略

之前询问得到的树用LCT维护,然后每次询问从根开始询问 询问次数和复杂度都是 O(nlogn)O(nlog⁡n)O(n\log n) 的 UPD:被HACK了 #include &amp;lt;...
  • Coldef
  • Coldef
  • 2018-02-11 13:31:10
  • 188

uoj 348&LibreOJ 2340 [WC2018]州区划分 状压dp+FMT

题意 给出一个n个点m条边的无向图,要求把点集分成若干个集合,满足每个集合非空且其导出子图中不存在欧拉回路。 给定一个数组wiwiw_i,求对于所有合法的划分{S1,S2..Sk}{S1,S2.....
  • qq_33229466
  • qq_33229466
  • 2018-03-27 07:30:43
  • 77

UOJ#348:【WC2018】州区划分 (FMT优化DP)

题目传送门:http://uoj.ac/problem/348 题目分析:题面就是要求将n个点划分为若干个集合,使得刚好包含某个集合的点以及它们之间的边的子图不存在欧拉回路。然后题面给出了一种方...
  • KsCla
  • KsCla
  • 2018-04-17 22:06:42
  • 19

【WC2018】州区划分

Description 原题链接 部分分 容易想到O(3n)O(3n)O(3^n)的子集DP fs=∑t⊆sft∗gs−tfs=∑t⊆sft∗gs−tf_s=\sum_{t⊆s}f_t*g...
  • lyd_7_29
  • lyd_7_29
  • 2018-03-07 22:42:37
  • 72

WC 2018 冬眠记

2.3 晚上开幕式,那个离骚挺有趣的,其他的不评价。 王会长透露出要考交互题的消息,开始慌张 2.4 上午美国队长lzz讲课,感觉理论(竞争分析)挺有趣233 下午myy蜜汁口音,全程倦生 ...
  • lyd_7_29
  • lyd_7_29
  • 2018-02-08 19:07:11
  • 242

杭 州 市 区 土 地 级 别 划 分 范 围 表 杭州 地段划分 一类 二类

四 至 界 线 范 围 Ⅰ级 东至中河路,南至河坊街、西湖风景名胜区界线,西至南山路、湖滨路、保俶路,北至体育场路、环城西路、密渡桥路、京杭运河、中河路高架桥。 Ⅱ级 Ⅰ级土地以外,东至绍兴路、环城东...
  • greki
  • greki
  • 2008-02-23 10:51:00
  • 5276
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 2万+
    积分: 2137
    排名: 2万+
    博客专栏