蓝桥杯练习 Sine之舞
问题描述
最近FJ为他的奶牛们开设了数学分析课,FJ知道若要学好这门课,必须有一个好的三角函数基本功。所以他准备和奶牛们做一个“Sine之舞”的游戏,寓教于乐,提高奶牛们的计算能力。
不妨设
An=sin(1–sin(2+sin(3–sin(4+…sin(n))…)
Sn=(…(A1+n)A2+n-1)A3+…+2)An+1
FJ想让奶牛们计算Sn的值,请你帮助FJ打印出Sn的完整表达式,以方便奶牛们做题。
输入格式
仅有一个数:N<201。
输出格式
请输出相应的表达式Sn,以一个换行符结束。输出中不得含有多余的空格或换行、回车符。
样例输入
3
样例输出
((sin(1)+3)sin(1–sin(2))+2)sin(1–sin(2+sin(3)))+1
思路分析:这道题在求Sn的时候需要An,因此可以先写一个函数,输入i,返回Ai的表达式(字符串),再写Sn的表达式,题目不是很难,主要是找到每一次循环做什么。
An的求解:首先观察:
A2 = sin(1-sin(2));
A3 = sin(1-sin(2+sin(3)));
A4 = sin(1-sin(2+sin(3-sin(4))));
…
我找的是这样一个规律:
A2可以通过这两项拼接:第一项是sin(1-,第二项是sin(2,最后再添加两个括号;
A3可以通过这三项拼接:第一项是sin(1-,第二项是sin(2+,第三项是sin(3,最后再添加三个括号;
那么每次循环就比较容易了,每次循环得到第i项,比如第i项就是sin(i如果后面还有项,就需要根据i是奇数还是偶数得到+或者-,再执行到最后一项的时候添加n个括号即可。
Sn的求解:首先观察:
S1 = A1+n;
S2 = (A1+n)A2+n-1;
S3 = ((A1+n)A2+n-1)A3+n-2;
可以看到
S2 = (S1)A2+n-1;
S3 = (S2)A3+n-2;
…
Sn = (Sn-1)An+n-n-1;
那么第i项就是将第i-1项先括起来,跟一个Ai再加上n-(i-1)即可;
那么每次循环就是先将上次循环的字符串括起来,跟上这一次的Ai字符串表达式,再加上n-(i-1)的值,如果当前循环是第n次,就不要括了,直接跟An加上1即可。
代码如下:
import java.util.*;
public class Main {
public static void main(String[] args) {
//数据输入
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
//ss代表Si
String ss = getAn(1)+"+"+n;//第一项S1
for (int i = 2; i <= n; i++) {
//将上次循环的字符串括起来,跟上这一次的Ai字符串表达式,再加上n-(i-1)的值
ss = "("+ss+")"+getAn(i)+"+"+(n-i+1);
}
System.out.println(ss);
}
//求Ai
private static String getAn(int i) {
if(i == 1){
return "sin(1)";
}
String res = "";
for (int j = 1; j <= i; j++) {
//先求得每一项的sin(j部分
res = res+"sin("+j;
//在判断是否需要加减号
if(j == i){
for(int k = 0;k<i;k++){
res += ")";
}
break;
}
//需要加减号的情况,根据j的奇偶情况添加
if(j%2==1){
res += "-";
}else{
res += "+";
}
}
return res;
}
}