量化策略方法分享之数据挖掘工具——决策树算法

本文介绍了决策树算法在量化策略中的应用,特别是在股票预测中的使用。通过信息熵和信息增益的概念,解释了如何利用决策树进行数据挖掘,并提到了ID3、C4.5和CART等经典算法。京东金融提供了相关数据,鼓励使用Python的Scikit-learn库进行实践。
摘要由CSDN通过智能技术生成

阅读原文:http://club.jr.jd.com/quant/topic/841642

京东金融官方资讯QQ群:417082141 有什么想咨询的都可以来询问我们哦

如今,大数据(Big Data)和数据挖掘(Data Mining)成为了一个热门话题和学术研究课题,但很多人对于它们的定义却只停留在数据量庞大而造成计算困难的层面。实际上,大数据往往代表的是大量的、不完全的、有噪声的、模糊的数据,而数据挖掘是指从大数据中提取隐含的、事先不知道的、但又是潜在有用的信息和知识的过程。

决策树算法作为数据挖掘其中一种判定数据所属类别的算法,数学模型简单,编程有程序包,极易上手,适合大家研究使用。具体应用常常是针对股票的高频数据算出VWAP后对股票涨跌进行预测,VWAP数据我注意到京东平台提供了,用get_vwap(intervals, frequency='day')语句在策略里就可以。需要前期的训练数据集进行学习。通常使用Python中的Scikit-learn学习包(简称sk-learn),下载地址:scikit-learn: machine learning in Python.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值