运筹学基础(四):单纯形法中检验数(reduced cost)的理解

本文详细解释了单纯形法中的检验数概念,通过直观理解说明如何通过调整非基变量来影响目标函数值,同时提供数学证明来确保这种理解的正确性,特别关注最小化和最大化问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在前文运筹学基础(一)求解线性规划的单纯形法详解
中,我们直观的理解了单纯形法其实是在可行域的顶点上搜索的过程。(这篇文章没有通过列单纯形表来讲述,而是选择了一种更符合直觉的方式,我觉得这对于初学者而言是更好理解的。单纯形表感觉还是有点绕…)

提到单纯形法,就不得不提一下检验数了,前文一带而过了,这篇文章单独拎出来聊一下。因为未来的学习中,很多更高阶的内容还会涉及到检验数的概念。

检验数理解

直观理解

检验数的直观理解就是,减少或增大某个变量的值,会给目标函数值带来多大的影响。

m i n i m i z e minimize minimize问题中,如果存在检验数为负的非基变量,则说明仍然存在变量可以进一步增大,从而使得目标函数值减小。

同理,在 m a x i m i z e maximize maximize问题中,如果存在检验数为正的非基变量,则说明仍然存在变量可以进一步增大,从而使得目标函数值增大。

数学证明

为什么上述理解是对的?我们通过简单的数学推导来证明一下。其实挺简单的,请耐心的看完。

假设我们的问题是一个 m i n i m i z e minimize minimize问题:

m i n c T x s . t . A x = b x ≥ 0 min\quad c^Tx\\ s.t.\quad Ax=b\\ x \geq0 mincTxs.t.Ax=bx0

我们将 x x x表示为基变量(一个基本解的组成部分)和非基变量(不是基本解的组成部分,可以自由改变的):
x = [ x B , x N ] x = [x_B, x_N] x=[xB,xN]
其中 x B x_B xB表示基变量, x N x_N xN表示非基变量。

类似的,我们将成本系数表示为:
c T = [ c B T ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值