运筹学基础(一)求解线性规划的单纯形法详解

本文详细介绍了线性规划问题如何转化为标准形式,通过实例演示了单纯形法的四个步骤:转化问题、找到初始解、旋转操作和终止条件。同时讨论了退化、初始解非可行和无界解的情况,以及算法的时间复杂度分析。
摘要由CSDN通过智能技术生成

前言

大学的《运筹学》课程中,手算单纯形法是期末的必考题了!(记得期末考试前一周,几个经常逃课的同学来我宿舍楼下,叫了辆车载我去星巴克给他们讲解这个算法,活活讲了一个多小时他们才听懂,不知道最后及格了没哈哈!)当时已经觉得是信手拈来了,但是时间久了+计算过程本身也比较繁琐,慢慢就忘了。后面为了应付面试,又拾起过,但是面完试细节又给忘了,只记得是在可行域的顶点上来回搜索。

这次想完整的梳理一篇文章(本文是跟着某位大佬的博客,在某些地方掺杂了一些自己的思考和补充知识点汇总的),帮助自己再次回顾和更深的理解单纯形法,原因是在看一些更高阶的算法时,常常需要单纯形法的预备知识!不然就很难继续往下看懂了。

废话有点多了,进入正题吧!

线性规划的标准形式

因为单纯形法就是建立在标准形式之上,在解空间沿着边界的顶点(称为单纯形,“单纯形” 用于描述凸多面体中的极端点或顶点),逐步改进目标值。所以先快速过一下如何将一个线性规划问题转为标准形式!

标准形式三要素:

  1. 目标函数 m i n i m i z e minimize minimize 或者 m a x i m i z e maximize maximize都行,不同教材选择不一样,本文用 m i n i m i z e minimize minimize
    • 不是minimize怎么办,取负就可以了。
  2. 约束条件等式化;
    • 不是等式怎么办?如果是 > = >= >=,左端减去松弛变量即可,如果是 < = <= <=,左端加上剩余变量即可(这两个变量我看定义也有反过来的,不做纠结了,都当作是辅助变量即可)。
  3. 决策变量非负化。

也就是:
在这里插入图片描述

其中:
在这里插入图片描述

一个例子理解单纯形法

4个步骤

  1. 将线性规划问题转化为标准形式;
  2. 找到一个初始可行解;
  3. 不断地进行旋转(pivot)操作(本质上是在顶点游走的过程);
  4. 重复步骤3直到解不能改进为止。

🌰栗子来了:
用单纯形法求解下面这个线性规划问题:
在这里插入图片描述

1. 将线性规划转化为标准形式

为了将不等式化为等式,我们引入了 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6 x 7 x_7 x7 4个辅助
在这里插入图片描述

2. 找到一个初始可行解

step 1: 将辅助变量用非辅助变量表示:

下式中左侧的变量都称为「基变量」,右边的变量都称为「非基变量
在这里插入图片描述
step 2: 将非基变量全部取0,得到一个基本解(0, 0, 0, 4, 2, 3, 6),很明显是可行的(不可行的情况后面在badcase里再讨论),我们称之为:基本可行解。此时的目标值 z = 0 z=0 z=0

备注:初始可行解中,辅助变量–>基变量,原来的那些变量–>非基变量。

3. 旋转操作

【第一轮旋转】
step 1: 在目标函数里找到一个系数为负的非基变量,作为入基变量

这么做的原因是,我们现在的目标函数是 m i n i m i z e minimize minimize,现在有一个初始可行解了,我们怎么找到一个目标值更小的解呢?只要将目标函数里系数为负的变量,在满足约束的前提下,进一步减小就可以了!(这与在单纯形表中计算检验数 reduce cost 是一个思想,对于检验数的深入理解,见我的文章运筹学基础(四):单纯形法中检验数(reduced cost)的理解

这里假设我们选取了 x 1 x_1 x1(这里有一个技巧,总是选择符合条件的下标最小的非基变量,原因是为了避免退化,后面badcase里会再讲)。

在这里插入图片描述

step2:将入基变量用基变量表示,准备替换:

update一下,今天看一本优化相关的书,他提到的如果选择出基变量的方法是:用约束方程中的常数项除以入基变量的系数,选择比值最小的那个(其实本质上也是选择约束最紧的那个),我觉得这个方式更简洁明了!

因为我们选择的 x 1 x_1 x1作为入基变量,上面第2个式子和第3个式子中都有 x 1 x_1 x1,用上述方法除完分别是:4/1=1, 2/1=2,因此选择 x 1 = 2 − x 5 x_1= 2-x_5 x1=2x5


因为我们选择的 x 1 x_1 x1作为入基变量,上面第2个式子和第3个式子中都有 x 1 x_1 x1,我们选择哪个来表示 x 1 x_1 x1呢? 我们来比较一下:

  • 用第2个式子表示 x 1 = 4 − x 2 − x 3 − x 4 x_1 =4-x_2-x_3-x_4 x1=4x2x3x4,即 x 1 ≤ 4 x_1 \leq 4 x14
  • 用第3个式子表示 x 1 = 2 − x 5 x_1= 2-x_5 x1=2x5,即 x 1 ≤ 2 x_1 \leq 2 x12

我们要选择更严格/紧的那个(也是为了防止退化,后面的badcase会讲),因此,最后将 x 1 x_1 x1表示成: x 1 = 2 − x 5 x_1 = 2 - x_5 x1=2x5

step 3: 将入基变量的表达式,带入目标函数,完成转动

一次转动选择一个非基变量(替入变量)和一个基变量(替初变量),并替换两者的角色。上式变成:
在这里插入图片描述
step4:非基变量变为0,更新基本解和目标函数
得到另一个可行解:(2, 0, 0, 2, 0, 3, 6),目标函数值 z = − 2 z=-2 z=2

4. 重复旋转

【第二轮旋转】
step 1: 在目标函数里找到一个系数为负的非基变量,作为入基变量

选择 x 2 x_2 x2作为入基变量

step2:将入基变量用基变量表示,准备替换:
常数项除以入基变量系数,第2个式子和最后一个式子除完分别是:2/1=2,6/3=2。


上面第2个式子和最后一个式子中都有 x 2 x_2 x2,我们选择哪个来表示 x 2 x_2 x2呢? 我们来比较一下:

  • 用第2个式子表示 x 2 = 2 − x 3 − x 4 + x 5 x_2 =2-x_3-x_4+x_5 x2=2x3x4+x5,相当于 x 2 ≤ 2 x_2 \leq 2 x22 x 3 和 x 5 x_3和x_5 x3x5都在右边,也就是非基变量,取0, 2 − x 4 ≤ 2 2-x_4 \leq 2 2x42)。
  • 用最后一个式子表示 x 2 = ( 6 − x 3 − x 7 ) / 3 x_2 =(6 -x_3-x_7) / 3 x2=(6x3x7)/3,相当于 x 2 ≤ 2 x_2 \leq 2 x22

因此,最后将 x 2 x_2 x2表示成: x 2 = 2 − x 3 − x 4 + x 5 x_2 =2-x_3-x_4+x_5 x2=2x3x4+x5
这里如果用$x_2 =(6 -x_3-x_7) / 3$,最终没有算出来,会得到一个非可行解,为什么。(todo)

step 3: 将入基变量的表达式,带入目标函数,完成转动
在这里插入图片描述

step4:非基变量变为0,更新基本解和目标函数
新的基本解为(2,2, 0, 0, 0, 3, 0),目标函数 z = − 30 z=-30 z=30

【第三轮旋转】
step 1: 在目标函数里找到一个系数为负的非基变量,作为入基变量
选择 x 5 x_5 x5作为入基变量,因为只有它的系数为负啦!

step2:将入基变量用基变量表示,准备替换:
用约束的常数项除以入基变量的系数,上式2、3、5除完分别是:2,2,0。因此选择最后一个表达式。


上式2、3、5中都有 x 3 x_3 x3,我们到底用哪个来表示呢? 我们来比较一下:

  • 用第2个式子表示: x 5 = x 2 + x 3 + x 4 − 2 x_5=x_2+x_3+x_4-2 x5=x2+x3+x42,即无限制;
  • 用第3个式子表示: x 5 = 2 − x 1 x_5 =2- x_1 x5=2x1,即 x 2 ≤ 2 x_2 \leq 2 x22
  • 用第5个式子表示: x 5 = ( 2 x 3 + 3 x 4 − x 7 ) / 3 x_5=(2x_3+3x_4-x_7)/3 x5=(2x3+3x4x7)/3,即 3 x 5 ≤ 2 x 3 + 3 x 4 3x_5 \leq 2x_3+3x_4 3x52x3+3x4, x 3 x 4 x_3x_4 x3x4都是非基变量,取0, 3 x 5 ≤ 0 3x_5 \leq 0 3x50理解对吗?(todo)

选择约束的最紧的那个 x 5 = ( 2 x 3 + 3 x 4 − x 7 ) / 3 x_5=(2x_3+3x_4-x_7)/3 x5=(2x3+3x4x7)/3

step 3: 将入基变量的表达式,带入目标函数,完成转动
在这里插入图片描述

新的基本解为(0,1, 3, 0, 2, 0, 0),目标函数 z = − 32 z=-32 z=32

终止条件就是目标函数中,已经没有系数为负的变量了!

一些badcase

退化

所谓退化指的是旋转过程中,目标函数值停在某个值不变了。这是使得单纯形算法不会终止的唯一原因。

解决方法——使用Bland规则:
在选择入基变量和出基变量的时候,总是选择满足条件的下标最小的变量:

  1. 入基变量:目标函数中系数为负的下标最小值对应的变量;
  2. 出基变量:对所有的约束条件中,选择约束条件最紧的那一个。

初始解不是可行解以及无解的情况

导致初始解不是可行解的原因: b i b_i bi存在负数!
具体要怎么做,有点复杂,看官直接看大佬的线性规划:单纯形法详解即可。

找不到有限制条件的替入变量——无界解

回顾一下线性规划解的4种情况:

  1. 唯一最优解;
  2. 无穷最优解(多重解);
  3. 无可行解;
  4. 无界解。
    在这里插入图片描述

当能找到替入变量,但对替入变量没有任何约束时(找不到替出变量?),说明是无界解的情况。

时间复杂度

最坏的情况下是非多项式的(指数时间复杂度, O ( 2 n ) O(2^n) O(2n)),绝大多数情况是多项式时间( O ( n ) O(n) O(n) ~ O ( n 3 ) O(n^3) O(n3))。下图左侧是多项式量级,右边是非多项式量级。
在这里插入图片描述

对算法时间复杂度计算感兴趣的,可以参考我的文章:算法时空复杂度分析:大O表示法

附录

  1. 一些基本概念
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

参考资料

  1. 线性规划:单纯形法详解
  2. 《运筹学基础》 李志猛
  3. 运筹学与单纯形法
  • 20
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值