运筹学基础(一)求解线性规划的单纯形法详解

本文详细介绍了线性规划问题如何转化为标准形式,通过实例演示了单纯形法的四个步骤:转化问题、找到初始解、旋转操作和终止条件。同时讨论了退化、初始解非可行和无界解的情况,以及算法的时间复杂度分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

大学的《运筹学》课程中,手算单纯形法是期末的必考题了!(记得期末考试前一周,几个经常逃课的同学来我宿舍楼下,叫了辆车载我去星巴克给他们讲解这个算法,活活讲了一个多小时他们才听懂,不知道最后及格了没哈哈!)当时已经觉得是信手拈来了,但是时间久了+计算过程本身也比较繁琐,慢慢就忘了。后面为了应付面试,又拾起过,但是面完试细节又给忘了,只记得是在可行域的顶点上来回搜索。

这次想完整的梳理一篇文章(本文是跟着某位大佬的博客,在某些地方掺杂了一些自己的思考和补充知识点汇总的),帮助自己再次回顾和更深的理解单纯形法,原因是在看一些更高阶的算法时,常常需要单纯形法的预备知识!不然就很难继续往下看懂了。

废话有点多了,进入正题吧!

线性规划的标准形式

因为单纯形法就是建立在标准形式之上,在解空间沿着边界的顶点(称为单纯形,“单纯形” 用于描述凸多面体中的极端点或顶点),逐步改进目标值。所以先快速过一下如何将一个线性规划问题转为标准形式!

标准形式三要素:

  1. 目标函数 m i n i m i z e minimize minimize 或者 m a x i m i z e maximize maximize都行,不同教材选择不一样,本文用 m i n i m i z e minimize minimize
    • 不是minimize怎么办,取负就可以了。
  2. 约束条件等式化;
    • 不是等式怎么办?如果是 > = >= >=,左端减去松弛变量即可,如果是 < = <= <=,左端加上剩余变量即可(这两个变量我看定义也有反过来的,不做纠结了,都当作是辅助变量即可)。
  3. 决策变量非负化。

也就是:
在这里插入图片描述

其中:
在这里插入图片描述

一个例子理解单纯形法

4个步骤

  1. 将线性规划问题转化为标准形式;
  2. 找到一个初始可行解;
  3. 不断地进行旋转(pivot)操作(本质上是在顶点游走的过程);
  4. 重复步骤3直到解不能改进为止。

🌰栗子来了:
用单纯形法求解下面这个线性规划问题:
在这里插入图片描述

1. 将线性规划转化为标准形式

为了将不等式化为等式,我们引入了 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6 x 7 x_7 x7 4个辅助
在这里插入图片描述

2. 找到一个初始可行解

step 1: 将辅助变量用非辅助变量表示:

下式中左侧的变量都称为「基变量」,右边的变量都称为「非基变量
在这里插入图片描述
step 2: 将非基变量全部取0,得到一个基本解(0, 0, 0, 4, 2, 3, 6),很明显是可行的(不可行的情况后面在badcase里再讨论),我们称之为:基本可行解。此时的目标值 z = 0 z=0 z=0

备注:初始可行解中,辅助变量–>基变量,原来的那些变量–>非基变量。

3. 旋转操作

【第一轮旋转】
step 1: 在目标函数里找到一个系数为负的非基变量,作为入基变量

这么做的原因是,我们现在的目标函数是 m i n i m i z e minimize minimize,现在有一个初始可行解了,我们怎么找到一个目标值更小的解呢?只要将目标函数里系数为负的变量,在满足约束的前提下,进一步减小就可以了!(这与在单纯形表中计算检验数 reduce cost 是一个思想,对于检验数的深入理解,见我的文章运筹学基础(四):单纯形法中检验数(reduced cost)的理解

这里假设我们选取了 x 1 x_1 x1(这里有一个技巧,总是选择符合条件的下标最小的非基变量,原因是为了避免退化,后面badcase里会再讲)。

在这里插入图片描述

step2:将入基变量用基变量表示,准备替换:

update一下,今天看一本优化相关的书,他提到的如果选择出基变量的方法是:用约束方程中的常数项除以入基变量的系数,选择比值最小的那个(其实本质上也是选择约束最紧的那个),我觉得这个方式更简洁明了!

因为我们选择的 x 1 x_1 x1作为入基变量,上面第2个式子和第3个式子中都有 x 1 x_1 x1,用上述方法除完分别是:4/1=1, 2/1=2,因此选择 x 1 = 2 − x 5 x_1= 2-x_5 x1=2x5


因为我们选择的 x 1 x_1 x1作为入基变量,上面第2个式子和第3个式子中都有 x 1 x_1 x1,我们选择哪个来表示 x 1 x_1 x1呢? 我们来比较一下:

  • 用第2个式子表示 x 1 = 4 − x 2 − x 3 − x 4 x_1 =4-x_2-x_3-x_4 x1=4
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值