Operations Research课程之线性规划对偶(对偶理论|影子价格|单纯形法|对偶单纯形法)

目录

1.对偶问题

1.1 原始和对偶

1.1.1 确定对偶形式

 1.1.2 对偶约束符号

  1.1.2 对偶变量符号

1.2 通用规则

2.对偶理论

2.1 对偶定理

2.1.1 弱对偶性

2.1.2 最优性定理

2.1.3 对偶最优解

2.1.4 强对偶性

2.1.5 互补松弛性

 2.2 为什么需要对偶

3.影子价格

3.1 为什么需要影子价格

3.2 影子价格定义

3.3 影子价格与对偶 

3.4 Gurobi求影子价格

4.对偶单纯形法

4.1 单纯形法

4.2 单纯形法矩阵形式

4.3 为什么要对偶单纯形法 

4.4 对偶单纯形法


来源:Coursera课程Operations Research (3): Theory Week2/3

之前已在博客线性规划及其对偶问题(单纯形法|人工变量|对偶理论)​​​​​​​中写过相关内容,但是Operations Research课程的解释更容易懂,提供了不同的学习视角

课程前言:

运筹学包括三个部分:模型,算法和理论,大部分场景下,理论(theory)是关于最优性条件(optimality conditions),求解实际问题需要建立模型,求解模型需要使用算法,而理论能帮助开发更好的算法

(1)最优性条件

  • 线性规划:对偶性✅
  • 整数规划:全单模矩阵
  • 非线性规划:KKT条件

(2)应用

敏感性分析,分支定界算法加速,网络流模型,线性回归,支持向量机

1.对偶问题

1.1 原始和对偶

1.1.1 确定对偶形式

假设有一个LP问题很难求解,有一个解\hat{x}的目标值是\hat{z},现在想要评估\hat{x}的质量,就要将\hat{z}与最优值z^{*}比较。如果能找到z^{*}的上界(下界),当\hat{z}足够接近这个边界时,\hat{x}就是比较好的解。如何找到一个LP问题的最优值边界?下面例子中目标函数可以直接通过约束条件得到一个上界16。

但是16可能不是一个比较紧的上界,还有更好的,那如何改善我们找到的上界呢?按照同样的思路,给每个约束条件赋值一个系数,不同的系数组合有不同的线性组合,也能提供不同的上界。

 1.1.2 对偶约束符号

假设上述问题中变量符号发生变化,x_{2}<0 ,x_{3}无限制,那么step2也会变化,对偶LP就变成如下所示,可见对偶问题中约束条件的符号取决于原始问题中变量的符号

  1.1.2 对偶变量符号

假设上述问题中第一个约束变成>,第二个约束变成等于=,那么step1也会变化,对偶LP就变成如下所示,可见对偶问题中变量的符号取决于原始问题中约束的符号

1.2 通用规则

如果原始LP是最小化问题,那么对偶LP是最大化问题,即最大化下界,那么所有变量和约束的符号规则都反过来。下面是找到对偶LP的通用规则,原始LP是最大化,就从左到右;原始LP是最小化,就从右到左;实际上这些规划不需要死记硬背,更重要的是理解1.1节中的原因,知道怎么决定对偶形式,约束及变量的符号。

2.对偶理论

2.1 对偶定理

前面提到是为了找到原始LP的最优值上下界,因此开发了对偶问题,实际上对偶问题的用处不仅于此,还有更多相关的理论。理论证明均是基于下面的primal-dual形式

2.1.1 弱对偶性

弱对偶性(weak duality)

2.1.2 最优性定理

最优性定理(sufficiency of optimality)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值