自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 COCO Annotator标注工具安装及测试(保姆级流程含图)

COCO Annotator是一款强大的基于Web的图像分割工具,专为对象检测、定位以及关键点标注设计。这款工具支持高效地对图片进行标签化,以生成用于训练数据集的标注。它包含了多种高级特性,如直接导出到COCO格式、对象的细部分割、添加关键点等功能,并提供了一个直观可定制化的界面。该工具特别适合机器学习实践者和需要进行大规模图像标注的团队。

2024-10-24 15:49:28 891

原创 Ollama安装使用与LLamaFactory微调模型(Windows)

Ollama 是一款开创性的人工智能(AI)和机器学习(ML)工具平台,它极大的简化了AI模型的开发和使用过程,Ollama出现的目的是为了解决AI模型的硬件配置和环境搭建的复杂问题:该工具的主要特点包括:(1)功能丰富,使用直观且高效。(2)对用户比较友好,上手无门槛。(3)推动AI普及,扩展AI能力。此外Ollama还会存在一系列的关键优势,它能自动识别并充分利用Windows系统中最优的硬件资源,可以实现针对性能优化,从而确保AI模型更加高效地运行;

2024-08-29 14:34:22 896

原创 调用星火知识库,记录试用过程(Python版)

该API基于知识检索增强模式,增强大模型能力。使用文档解析和理解能力将企业私域文档和结构化数据构建为可供检索的知识,使大模型可检索私域知识用于知识问答和内容生成,高效构建更懂企业和业务的大模型。

2024-08-19 18:39:01 577 1

原创 三维成矿预测关键技术问题总结

三维成矿预测经过多年发展,已在二维成矿定量预刻方法体系基础上,建立了方法体系。三维成矿预测强调在系统收集研究区多维、多元地学数据的基础上,深入研究区域及矿床地质特征;通过三维地质建摸方法整合海量地学数据、解析深层地质结构;利用三维空间分析与三维数值模拟等方法挖掘三维预测要素信息;最终基于数学模型进行信息融合,定量计算成矿有利程度,实现三维预测靶区圈定。在三维成矿预测流程中,方法体系能够指导方法和技术的集成,逐级聚焦并指引预测工作方向,提高找矿勘查工作的效率和科学性;知识发现。

2024-08-19 18:02:01 987

原创 pyInstaller使用总结(命令、资源、图片转换Base64使用,有问题可以随时沟通)

python打包及相关资源添加

2024-08-13 18:32:12 445

原创 AI Earth 平台及开发工具的试用

该解译平台可以在本地的IDE上进行解译任务的下发,解译结果的下载,具体细节问题请关注后续文章。

2024-05-29 22:09:28 1445

原创 武汉 LuoJiaAI(LuoJiaSET/LuoJiaNET)产品试用

查询服务主要针对必选项多任务类型(目标识别、场景检索、地物分类、变化检测、多视三维)、可选多数据集类型(DOTA_V1.5 等多数据)、多数据源(合成孔径雷达、光学影像、多光谱影像)、多类别(飞机、船、住房、绿地等类别)、经纬度范围(矩形工具框选)、时间跨度等多方面信息的内容进行查询。通过更改参数设置,包括卫星图级别选取(15-18 级)、示例任务选择(目标识别、场景检索、地物分类、变化检测、多视三维)、框选实验区域,开始测试以及结果展示(原图/结果下载、历史结果查看)等参数或功能。共包含 2 套数据集。

2024-05-28 22:04:51 1027

原创 华为 AI 开发平台 ModelArts 产品试用

当前 ModelArts 支持如下格式的数据集。(1)图片:对图像类数据进行处理,支持 .jpg、.png、.jpeg、.bmp 四种图像格式,支持用户进行图像分类、物体检测、图像分割类型的标注。(2)音频:对音频类数据进行处理,支持.wav 格式,支持用户进行声音分类、语音内容、语音分割三种类型的标注。(3)文本:对文本类数据进行处理,支持.txt、.csv 格式,支持用户进行文本分类、命名实体、文本三元组三种类型的标注。(4)对视频类数据进行处理,支持.mp4 格式,支持用户进行视频标注。

2024-05-27 22:15:46 1117

原创 影像标注工具 Labelme 试用情况

LabelIme 是一款 麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发的图像标注工具,主要用于用于图像标注和分割的开源工具,广泛应用于计算机视觉和机器学习领域。它提供了一个直观且功能丰富的界面,使用户能够轻松地创建图像标注和分割数据集,以用于训练和评估模型。它是一个基于网页的工具,不需要下载或安装,为了保护数据的安全,目前也安装了本地的 LabelIme 软件。经调研该工具结合 YoLoV5 算法模型可以进行物体检测、语义分割和图像分类。

2024-05-26 20:48:03 1160

原创 标注工具 LabelImg 试用情况

LabelImg 是一款开源的影像标注工具,主要用于标注影像中的目标边界框、关键点、分割边界等信息。它是由 Python 编写的,并使用 Qt 作为其图形界面。经调研该工具结合 YoLoV5 算法模型可以进行目标识别和目标检测。(1)目标识别:是指在图像或视频中识别出特定类别的目标物体。它的目标是确定图像中是否存在目标,并将其分类为预定义的目标类别之一。对于遥感影像可以进行地物分类和识别: 通过目标识别和标注,可以对遥感图像中的地物进行分类和识别,如建筑物、道路、农田等。

2024-05-25 13:26:18 1159

原创 ResNet算法研究过程及结果

ResNet是深度学习中经典的卷积神经网络模型之一,由微软亚洲研究院的研究员Kaiming He等人在2015年提出,ResNet是一个具有诸多层层卷积的残差网络Residual Network),通过引入残差模块,解决了深层网络难以训练的问题,使得更深的网络可以取得更好的准确率,ResNet的结构包括了卷积层、池化层、全连接层等基础层,并寅入了残差块来连接网络中的多个卷积层,从而构建更深的神经网络,ResNet。

2024-05-24 11:43:29 1534

原创 Yolov5算法研究过程及结果情况

本实验根据示例数据完成工厂工人安全帽和工作制服的目标检测任务。在遥感领域,目标检测是遥感图像自动分析与智能解译的基础,主要目的在于从给定图像中识别出预定义类别的目标,并精确回归目标实例的定位,如水平边框(Horizontal Bounding Box)或有向边框(Oriented Bounding Box),这有助于实现多目标的快速准确分类或跟踪。遥感图像卷积后多尺度特征学习能力弱、检测精度与模型参数数量相互制约等问题。

2024-05-23 11:32:13 934 1

原创 本地部署百度飞桨Paddle(试用CPU版)

试用过程,有问题欢迎指导!!!

2024-05-22 17:36:01 1611

景州塔全景照片无人机识别切割(高像素)

在晨光初破的温柔光线中,部署了一架装备有高清摄像头的无人机,缓缓升空,直指历史悠久的景州塔。这座古塔,以其巍峨的身姿和斑驳的岁月痕迹,静静诉说着千年的故事。无人机在空中盘旋,以独特的视角捕捉着景州塔的每一个细节:从塔尖的精致雕刻到塔身的层层斗拱,再到塔基稳固的基石,无一不被清晰而生动地记录下来。随着镜头的移动,还巧妙地融入了周围古朴的街巷与远处连绵的山峦,构成了一幅幅既壮观又细腻的画卷。拍摄完成后,待无人机平稳降落,将这些珍贵的影像资料转换成高分辨率的照片,每一张都定格了时间,让景州塔的历史之美得以跨越时空进行传递。

2024-09-23

遥感影像智能解译与人工智能ppt

该ppt按照遥感卫星简述、人工智能技术、智能遥感解译、总结与展望,主要介绍了 从数据到应用实现智能解译一体化、遥感卫星、数据源、样本库、人工智能中的深度学习及遥感解译解译算法(语义分割、目标识别、变化检测),并根据具体的算法进行说明。ppt共计40页,设有不同的动画,该PPT也可作为学术会议的模板,该ppt模板非本人成果,内容才是。忘悉知。

2024-08-15

元胞自动机疏散演练模型

基于其他模型改进(文件内Readme注释),将模拟的场景设为拥有90个座位的大会议室,按照三列五排进行排列,当模拟疏散演练开始时,每个人员从自己的座位起身,到所有人员从安全出口撤离完成,可以实时记录模拟逃生的人数与时间,从而完成比较好的疏散模拟。该模拟可以针对大型场所(学校,图书馆,演唱会等),具体参数需要自己去配置,仅供参考。

2024-06-12

无人机数据合成的tif格式文件(示例)

无人机正射影像是一种新型数字测绘产品,有着广阔的应用前景。该数据包含量的房屋植被及农作物

2024-05-26

U-net模型调整优化(引入残差网络及小波变换模块)

源码下载,在图像处理和网络结构处都做了优化,可用于图像分割,图像识别等用途。实验结果表明,该模型较之前的模型有较大的提升

2024-05-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除