- 博客(13)
- 收藏
- 关注
原创 COCO Annotator标注工具安装及测试(保姆级流程含图)
COCO Annotator是一款强大的基于Web的图像分割工具,专为对象检测、定位以及关键点标注设计。这款工具支持高效地对图片进行标签化,以生成用于训练数据集的标注。它包含了多种高级特性,如直接导出到COCO格式、对象的细部分割、添加关键点等功能,并提供了一个直观可定制化的界面。该工具特别适合机器学习实践者和需要进行大规模图像标注的团队。
2024-10-24 15:49:28 891
原创 Ollama安装使用与LLamaFactory微调模型(Windows)
Ollama 是一款开创性的人工智能(AI)和机器学习(ML)工具平台,它极大的简化了AI模型的开发和使用过程,Ollama出现的目的是为了解决AI模型的硬件配置和环境搭建的复杂问题:该工具的主要特点包括:(1)功能丰富,使用直观且高效。(2)对用户比较友好,上手无门槛。(3)推动AI普及,扩展AI能力。此外Ollama还会存在一系列的关键优势,它能自动识别并充分利用Windows系统中最优的硬件资源,可以实现针对性能优化,从而确保AI模型更加高效地运行;
2024-08-29 14:34:22 896
原创 调用星火知识库,记录试用过程(Python版)
该API基于知识检索增强模式,增强大模型能力。使用文档解析和理解能力将企业私域文档和结构化数据构建为可供检索的知识,使大模型可检索私域知识用于知识问答和内容生成,高效构建更懂企业和业务的大模型。
2024-08-19 18:39:01 577 1
原创 三维成矿预测关键技术问题总结
三维成矿预测经过多年发展,已在二维成矿定量预刻方法体系基础上,建立了方法体系。三维成矿预测强调在系统收集研究区多维、多元地学数据的基础上,深入研究区域及矿床地质特征;通过三维地质建摸方法整合海量地学数据、解析深层地质结构;利用三维空间分析与三维数值模拟等方法挖掘三维预测要素信息;最终基于数学模型进行信息融合,定量计算成矿有利程度,实现三维预测靶区圈定。在三维成矿预测流程中,方法体系能够指导方法和技术的集成,逐级聚焦并指引预测工作方向,提高找矿勘查工作的效率和科学性;知识发现。
2024-08-19 18:02:01 987
原创 武汉 LuoJiaAI(LuoJiaSET/LuoJiaNET)产品试用
查询服务主要针对必选项多任务类型(目标识别、场景检索、地物分类、变化检测、多视三维)、可选多数据集类型(DOTA_V1.5 等多数据)、多数据源(合成孔径雷达、光学影像、多光谱影像)、多类别(飞机、船、住房、绿地等类别)、经纬度范围(矩形工具框选)、时间跨度等多方面信息的内容进行查询。通过更改参数设置,包括卫星图级别选取(15-18 级)、示例任务选择(目标识别、场景检索、地物分类、变化检测、多视三维)、框选实验区域,开始测试以及结果展示(原图/结果下载、历史结果查看)等参数或功能。共包含 2 套数据集。
2024-05-28 22:04:51 1027
原创 华为 AI 开发平台 ModelArts 产品试用
当前 ModelArts 支持如下格式的数据集。(1)图片:对图像类数据进行处理,支持 .jpg、.png、.jpeg、.bmp 四种图像格式,支持用户进行图像分类、物体检测、图像分割类型的标注。(2)音频:对音频类数据进行处理,支持.wav 格式,支持用户进行声音分类、语音内容、语音分割三种类型的标注。(3)文本:对文本类数据进行处理,支持.txt、.csv 格式,支持用户进行文本分类、命名实体、文本三元组三种类型的标注。(4)对视频类数据进行处理,支持.mp4 格式,支持用户进行视频标注。
2024-05-27 22:15:46 1117
原创 影像标注工具 Labelme 试用情况
LabelIme 是一款 麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发的图像标注工具,主要用于用于图像标注和分割的开源工具,广泛应用于计算机视觉和机器学习领域。它提供了一个直观且功能丰富的界面,使用户能够轻松地创建图像标注和分割数据集,以用于训练和评估模型。它是一个基于网页的工具,不需要下载或安装,为了保护数据的安全,目前也安装了本地的 LabelIme 软件。经调研该工具结合 YoLoV5 算法模型可以进行物体检测、语义分割和图像分类。
2024-05-26 20:48:03 1160
原创 标注工具 LabelImg 试用情况
LabelImg 是一款开源的影像标注工具,主要用于标注影像中的目标边界框、关键点、分割边界等信息。它是由 Python 编写的,并使用 Qt 作为其图形界面。经调研该工具结合 YoLoV5 算法模型可以进行目标识别和目标检测。(1)目标识别:是指在图像或视频中识别出特定类别的目标物体。它的目标是确定图像中是否存在目标,并将其分类为预定义的目标类别之一。对于遥感影像可以进行地物分类和识别: 通过目标识别和标注,可以对遥感图像中的地物进行分类和识别,如建筑物、道路、农田等。
2024-05-25 13:26:18 1159
原创 ResNet算法研究过程及结果
ResNet是深度学习中经典的卷积神经网络模型之一,由微软亚洲研究院的研究员Kaiming He等人在2015年提出,ResNet是一个具有诸多层层卷积的残差网络Residual Network),通过引入残差模块,解决了深层网络难以训练的问题,使得更深的网络可以取得更好的准确率,ResNet的结构包括了卷积层、池化层、全连接层等基础层,并寅入了残差块来连接网络中的多个卷积层,从而构建更深的神经网络,ResNet。
2024-05-24 11:43:29 1534
原创 Yolov5算法研究过程及结果情况
本实验根据示例数据完成工厂工人安全帽和工作制服的目标检测任务。在遥感领域,目标检测是遥感图像自动分析与智能解译的基础,主要目的在于从给定图像中识别出预定义类别的目标,并精确回归目标实例的定位,如水平边框(Horizontal Bounding Box)或有向边框(Oriented Bounding Box),这有助于实现多目标的快速准确分类或跟踪。遥感图像卷积后多尺度特征学习能力弱、检测精度与模型参数数量相互制约等问题。
2024-05-23 11:32:13 934 1
景州塔全景照片无人机识别切割(高像素)
2024-09-23
遥感影像智能解译与人工智能ppt
2024-08-15
元胞自动机疏散演练模型
2024-06-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人