目录
1.试用环境(Windows10+Anaconda3+Pycharm2023.2.3)
试用过程,有问题欢迎指导!!!
1.试用环境(Windows10+Anaconda3+Pycharm2023.2.3)
2.搭建飞桨环境(因为我的显卡支持CUDA11.1, 目前官方发布的 windows 安装包仅包含 CUDA 11.2/11.6/11.7/11.8/12.0,如需使用其他 cuda 版本通过源码自行编译。)
首先创建一个虚拟环境:
conda create -n BaiduPaddle python=3.8(python版本要求3.8、3.9、3.10、3.11、3.12)
激活虚拟环境
conda activate BaiduPaddle
安装cpu版本paddlepaddle
pip install paddlepaddle==2.6.1 -i https://mirror.baidu.com/pypi/simple
安装完成验证
依次输入python、import paddle 、addle.utils.run_check()、若结果显示PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.则证明安装成功。
至此安装成功。(注:卸载
pip uninstall paddlepaddle
)
3.测试Demo
本篇博客采用DeeplebV3+算法模型,通过克隆相应的代码
git clone https://github.com/PaddlePaddle/PaddleSeg.git
并在Pycharm打开,cd PaddleSeg/,连接上之前配好的虚拟环境,运行pip install -r requirements.txt
数据集准备:本次实验的数据采用的是VOC数据格式,需要将实验数据放在tools/data下自定义名称的方法我才用的名称为dataset_root、image(原图)、label(标签),将split_dataset_list
运行split_dataset_list.py,生成train.txt、val.txt、test.txt三个txt的文件(注此处如果文件夹过大,将划分不出训练集和数据集),划分的结果如下图
划分完了进行模型的训练,运行tools/trains前,需要配置里面的参数路径(configs\quick_start),设置训练模型,如下
进而完成模型的训练。