Yolov5算法研究过程及结果情况

本文详细介绍了YOLOv5算法的背景及其模型结构,重点讲解了实验环境的搭建过程,包括CUDA、cuDNN、Anaconda、PyTorch的安装与配置,以及如何在Pycharm中使用。接着,文章阐述了数据集的准备、处理,模型的训练步骤和结果,展示了训练后的预测效果。最后,讨论了YOLOv5在目标检测领域的应用和优势。
摘要由CSDN通过智能技术生成

目录

1、算法简介

2、实验环境搭建

2.1 下载并安装CUDA

2.2 下载并安装cuDNN

2.3 下载并安装Anaconda3

2.4 创建管理虚拟环境

2.5 安装PyTorch CUDA版

2.6 验证是否安装成功

2.7 在Pycharm上使用搭建好的环境

3.算法包的下载

3.1 算法包的组成结构

3.2 模型的训练步骤及结果

4.总结

1、算法简介

YOLO系列是目前最热门的目标检测算法,其YOLOv5模型具有高效、准确、实时等优点,在目标检测领域已被广泛应用。YOLOv5模型主要由三部分组成,分别是输入端、Backbone、Nek和Head,其网络结构如下图所示,其中Backbone部分主要负责输入图像的特征提取;Neck负责对特征图进行多尺度特征融合把特征传递给预测层; Head进行最终的回归预测。

2、实验环境搭建

本实验所使用的配置环境为:CPU配置:Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz;GPU配置:NVIDIA GeForce GTX 1660 SUPER GPU,13.9 GB;

操作系统Windows10;深度学习框架为Pytorch2.12.1。

具体搭建步骤如下:

2.1 下载并安装CUDA

安装CUDA之前首先要检查电脑是否存在NVIDIA的显卡,如果存在打开NVIDIA控制面板,查看所需要的CUDA的版本信息(如下图(当前配置)),一般这种情况下安装CUDA的版本为11.1及以下版本,选择合适的目标平台(如Windows/X86_64/10/exe(Local))。验证是否安装成功:nvcc -V如果不存在,则直接安装Pytorch。

2.2 下载并安装cuDNN

cuDNN是用于深度神经网络的GPU加速库,查找并下载对应于CUDA版本的cuDNN,下载后解压,把压缩包内的bin/include/lib包替换到NVIDIA GPU Computing Toolkit/CUDA/V11.1目录下。并配置cuDNN的环境变量:共包含以下变量CUDA_PATH;CUDA_SDK_PATH;CUDA_LIB_PATH;CUDA_BIN_PATH;CUDA_SDK_BIN_PATH;CUDA_SDK_LIB_PATH。此外还需添加path变量分别为CUDA Samples\v11.1\common\lib\x64;NVIDIA GPU Computing Toolkit\CUDA\v11.1\lib\x64;CUDA Samples\v11.1\bin\win64;NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin。配置好以上的环境,完成cuDNN的安装。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值