目录
1、算法简介
YOLO系列是目前最热门的目标检测算法,其YOLOv5模型具有高效、准确、实时等优点,在目标检测领域已被广泛应用。YOLOv5模型主要由三部分组成,分别是输入端、Backbone、Nek和Head,其网络结构如下图所示,其中Backbone部分主要负责输入图像的特征提取;Neck负责对特征图进行多尺度特征融合把特征传递给预测层; Head进行最终的回归预测。
2、实验环境搭建
本实验所使用的配置环境为:CPU配置:Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz;GPU配置:NVIDIA GeForce GTX 1660 SUPER GPU,13.9 GB;
操作系统Windows10;深度学习框架为Pytorch2.12.1。
具体搭建步骤如下:
2.1 下载并安装CUDA
安装CUDA之前首先要检查电脑是否存在NVIDIA的显卡,如果存在打开NVIDIA控制面板,查看所需要的CUDA的版本信息(如下图(当前配置)),一般这种情况下安装CUDA的版本为11.1及以下版本,选择合适的目标平台(如Windows/X86_64/10/exe(Local))。验证是否安装成功:nvcc -V如果不存在,则直接安装Pytorch。
2.2 下载并安装cuDNN
cuDNN是用于深度神经网络的GPU加速库,查找并下载对应于CUDA版本的cuDNN,下载后解压,把压缩包内的bin/include/lib包替换到NVIDIA GPU Computing Toolkit/CUDA/V11.1目录下。并配置cuDNN的环境变量:共包含以下变量CUDA_PATH;CUDA_SDK_PATH;CUDA_LIB_PATH;CUDA_BIN_PATH;CUDA_SDK_BIN_PATH;CUDA_SDK_LIB_PATH。此外还需添加path变量分别为CUDA Samples\v11.1\common\lib\x64;NVIDIA GPU Computing Toolkit\CUDA\v11.1\lib\x64;CUDA Samples\v11.1\bin\win64;NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin。配置好以上的环境,完成cuDNN的安装。