【论文阅读】EMNLP2022 知识对话系统

探讨预训练语言模型在无监督知识对话中的应用,通过微调技术改进对话质量和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【论文阅读】Eliciting Knowledge from Large Pre-Trained Models for Unsupervised Knowledge-Grounded Conversation | EMNLP 2022
文章链接

前言

直接在原始文本上进行学习的预训练语言模型近几年取得了重大进展,这类大模型能否作为数据库用于下游任务呢?本文在无监督知识对话上探究了上述问题。
没太搞明白这篇文章的贡献在哪里,从知识的生成方法来看用的是前人的模型。可能是结合知识回答问题,解决事实幻觉(Hallucination)这里的贡献?有时间了再看一下。

Method

用的什么模型

给定对话历史,生成相关知识。用了两种微调方法,分别是传统的Fine-Tuning和Prefix-Tuning。后者可以避免灾难性遗忘,或许对知识对话有帮助。
考虑了两类大模型,Pre-trained Language Models (PLMs) 和 Pre-trained Dialogue Models (PDMs)。本文从两类中各挑了一个代表性方法,分别是T5和DialoGPT。
文章中对Fine-Tuning和Prefix-Tuning区别的示意图

评价模型生成知识的质量

人工评价,设定了很多标准。从对问题的理解、回答是否可验证、答案是否正确三方面打分。

Noisy Training

To do

实验

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值