板子合集2.0

DBWGLX’s板子2.0

原文链接:https://blog.csdn.net/JK01WYX/

文章目录

1.快速幂板子;快速幂求逆元

原理:

我们用分治思想是比一个一个乘快的

即比如我们求a的8次方 :a1a1 = a2 ,那么我们直接a2a2 = a4,a4*a4 = a8

参数就是几次幂。返回值是对应参数的幂 (这里对p取余了)(一般也把a当参数)

long long a, p;//a^c mod p=s
long long fp(int c)
{
    if(c==0)return 1;
    if (c == 1)return a % p;


    long long tmp = fp(c / 2); 
    if (c % 2 == 0)
        return tmp * tmp % p;
    else
        return tmp * tmp % p * a % p;
}

long long fp(long long a,int c)
{
    if(c==0)return 1;
    if (c == 1)return a % MOD;
    long long tmp = fp(a,c / 2); 
    if (c % 2 == 0)
        return tmp * tmp % MOD;
    else
        return tmp * tmp % MOD * a % MOD;
}

细节解释:
c == 1就是1次幂。

tmp就是a的c/2次幂。我们要返回c次幂,整数除法是向下取整的。

(比如5次幂,5/2==2,那么需要额外乘一个使得为c次幂)

——————————
非递归写法:(二进制拆分)

#define ll long long
ll mod = 1e9+7;
ll q(ll a,ll b)
{
    ll s = 1;
    while(b)
    {
        if(b&1) s = s * a %mod;
        a = a * a % mod;
        b >> 1;
    }
    return s;
}

———————

快速幂求逆元:

前提:
费马小定理: 1 ≡ a p − 1   ( m o d   p ) 1 ≡ a^{p-1} ~(mod ~p) 1ap1 (mod p) ( 1和 a^(p-1)在mod质数p下同余 )

欧拉定理 & 费马小定理 - OI Wiki
————

逆元也就是倒数,若我们求a的逆元x,则满足:

a x ≡ 1   ( m o d   p ) ax ≡ 1~ (mod ~p) ax1 (mod p)

而由费马小定理可得
a x ≡ a p − 1   ( m o d   p ) ax ≡ a^{p-1}~ (mod ~p) axap1 (mod p)

x ≡ a p − 2   ( m o d   p ) x ≡ a^{p-2}~ (mod ~p) xap2 (mod p)

2.gcd得最大公约数

证法一
a可以表示成a = kb + r(a,b,k,r皆为正整数,且r不为0)
假设d是a,b的一个公约数,记作d|a,d|b,即a和b都可以被d整除。
而r = a - kb,两边同时除以d,r/d=a/d-kb/d,由等式右边可知m=r/d为整数,因此d|r
因此d也是b,a mod b的公约数。
因(a,b)和(b,a mod b)的公约数相等,则其最大公约数也相等,得证。
——————

百度百科证法一的一些便于理解的细节:

我们求 a 和 b 的最大公约数。

(如果a是b的倍数,那么b就是最大公约数。)

a>b,a可以表示为 a = kb + r

设d为a和b的最大公约数

对上式等号左右两端同时除以d,得 a/d = kb/d + r/d

a/d 和 kb/d都是整数,那么r/d也是整数。那么r也是d的倍数。同时r<b,r与b的最大公约数也是d

( r<d是因为r = a%b (由a的表示可知))

那么问题就转化成求 b 与 r 的最大公约数。

即 gcd(a,b) = gcd(b,a mod b)

r会一直变小,为0时,b就是最大公约数了 (b最小为1,当b为1时,余数必然为0)

——————

(当然再进一次循环就是 a 与 0 。返回a即可):

long long gcd(long long a,long long b)
{
    if (a<b)
        swap(a,b); 
    if (b==0)      
        return a;
    else
        return gcd(b, a % b);
}

3.堆优化的dijkstra板子

1.第一个结构体dis_node把下标和该下标距起点的当前最短路放入一个结构体了,这样做堆排的时候方便找下标。

2.cmp仿函数是用于堆排比较器的,(试过greater<自己的类型>()是不行的。。)

建的小根堆快速选择当前最短路(dijkstra的原理)

①tmpdis代表节点之间的距离,有的时候就是1,自己设置吧,dijkstr主函数中算距离用。

②dij代表此点到所有点的最短路,所以我放参数列表当输出型参数了,许多题可能要用到。

③vector<set>arr代表通路,用set可以去重(有的题可能是多重图,即含平行边)。

④加强:自己到自己不用,所以if一下。因为next = cur,会吧dij[cur]给覆盖掉造成错误

    int tmpdis = 1;
    struct dis_node//放堆里面比长度,但是想知道端点
    {
        int dis;
        int next;
        bool operator < (const dis_node& a)
        {
            return dis < a.dis;
        }
        dis_node(int d, int n)
        {
            dis = d; next = n;
        }
    };
    class cmp
    {
    public:
        bool operator()(dis_node a, dis_node b)
        {
            return a.dis > b.dis;//
        }
    };
    void dijkstr(vector<int>&dij,vector<set<int>>& arr, int ori, int n)
    {
        priority_queue<dis_node, vector<dis_node>, cmp>heap;
        
        vector<int>barr(n + 1);
        int cur = ori;
        while (1)
        {
            //该次点所有可走的
            for (auto next : arr[cur])
            {
                if(next == cur)continue;
 
                //next就是下一个点(邻接表
                if (dij[next] == 0)
                    dij[next] = dij[cur] + tmpdis;
                else
                    dij[next] = min(dij[next], dij[cur] + tmpdis);
                heap.push(dis_node(dij[next], next));
            }
            //该点已使用,已最短,无需再抵达
            barr[cur] = 1;
            //最短路中找最短,同时可抵达的
            while (heap.size())
            {
                if (barr[heap.top().next] == 0)
                    break;
                heap.pop();
            }
            if (heap.size() == 0)break;
            cur = heap.top().next;
            heap.pop();
        }
    }

4.【线段树】框架

注意,线段树节点是从1开始的,维护的区间可以不是。

构造里可以改build_tree范围。

ll构造:

 
class ST//segment tree
{
	struct node
	{
		ll val;
		int l, m, r;
		node(int v = 0) :val(v), l(0), m(0), r(0)
		{}
	};
	int aiml, aimr;
	int val;
 
	int n;
	vector<ll>a;
	vector<node>d;
	void build_tree(int i, int l, int r)
	{
		d[i].l = l, d[i].m = l + (r - l) / 2, d[i].r = r;
		if (l == r)
		{
			d[i].val = a[l] ;
			return;
		}
		build_tree(i * 2, l, d[i].m);
		build_tree(i * 2 + 1, d[i].m + 1, r);
		push_up(i);
	}
	void push_up(int i)
	{
		d[i].val = (d[i * 2].val + d[i * 2 + 1].val) ;
	}
	void push_down(int i)
	{
		auto& lchild = d[i * 2], & rchild = d[i * 2 + 1];
	}
	ll _getsum(int i)
	{
		if (d[i].l > aimr || d[i].r < aiml)return 0;
		if (aiml <= d[i].l && d[i].r <= aimr)return d[i].val;
 
		//push_down(i);
 
		return (_getsum(i * 2) + _getsum(i * 2 + 1)) ;
	}
	ll _getmax(int i)
	{
		if (d[i].l > aimr || d[i].r < aiml)return LLONG_MIN;
		if (aiml <= d[i].l && d[i].r <= aimr)return d[i].val;
 
		//push_down(i);
 
		return max(_getmax(i * 2), _getmax(i * 2 + 1));
	}
	void _update1(int i)
	{
		if (d[i].l > aimr || d[i].r < aiml)return;
		if (aiml <= d[i].l && d[i].r <= aimr)
		{
			d[i].val = (d[i].val + val * (d[i].r - d[i].l + 1));
			return;
		}
 
		//push_down(i);//因为要向下搜了,所以把当前的懒标记给下面兑现一下
 
		_update1(i * 2);
		_update1(i * 2 + 1);
		//push_up(i);
	}
public:
	ll getsum(int l, int r)
	{
		aiml = l, aimr = r;
		return _getsum(1);
	}
	ll getmax(int l, int r)
	{
		aiml = l, aimr = r;
		return _getmax(1);
    }
	void update1(int l, int r, ll val)
	{
		aiml = l, aimr = r;
		this->val = val;
		_update1(1);//加并挂标记
	}
	ST(vector<ll>arr)
	{
		a = arr;
		n = a.size() - 1;
		d = vector<node>(4 * n);
		build_tree(1, 1, n);
		a = {};//清空a数组
	}
};

5.线段树的三个板子

线段树1板子 区间加

类的构造函数写在类最后了,本板子没有将左右下标封装到节点中,而是实时计算的。

建议阅读:线段树 - OI Wiki (oi-wiki.org)

线段树的结构关系:

这是一颗线段树,a[5] = {10,11,12,13,14}
在这里插入图片描述

可以看出5个节点对应下图二叉树的话,其实节点到了第4层:

//            1
//	  2      3		2^1
//	4   5  6   7		2^2
//     8 9			2^3
//1		log1==0
//2		log2==1		log3==1
//4		log4==2		log5==log6==log7==2
//8
//log5 == 2, +1在第三层,0~3 共四层 4
// 
//完全二叉树的总结点数就是:
//等比数列求和
//1*(2^  - 1)/(2-1)
//logn + 1层
//pow(2,(int)log2(n)+1)-1
//

long long作为下标的代码:

#define ll long long
template<class T>
class ST//segment tree
{
	struct node
	{
		T val;
		T t;//懒标记//服务后代
		node(T v = 0) :val(v), t(0)
		{}
	};
	ll n = a.size();
	vector<T>a;
	vector<node>d;
public:
	void build_tree(ll i, ll l, ll r)
	{
		if (l == r)
		{
			d[i].val = a[l];
			return;
		}
		ll mid = l + (r - l) / 2;
		build_tree(i * 2, l, mid);
		build_tree(i * 2 + 1, mid + 1, r);
		d[i].val = d[i * 2].val + d[i * 2 + 1].val;
	}
	void spread(ll i, ll l, ll r, ll aiml, ll aimr)
	{
		ll mid = l + (r - l) / 2;
		if (d[i].t != 0 && l != r)
		{
			d[i * 2].val += d[i].t * (mid - l + 1);
			d[i * 2 + 1].val += d[i].t * (r - mid);
			d[i * 2].t += d[i].t;//可能上上次也没改
			d[i * 2 + 1].t += d[i].t;
			d[i].t = 0;
		}
	}
	T getsum(ll l, ll r)
	{
		return _getsum(1, 1, n, l, r);
	}
	T _getsum(ll i, ll l, ll r, ll aiml, ll aimr)
	{
		if (aiml <= l && r <= aimr)//查询区间的子集全部加起来
			return d[i].val;
 
		//访问
		ll mid = l + (r - l) / 2;
		spread(i, l, r, aiml, aimr);
 
		T ret = 0;
		if (aiml <= mid)
			ret += _getsum(i * 2, l, mid, aiml, aimr);
		if (aimr >= mid + 1)
			ret += _getsum(i * 2 + 1, mid + 1, r, aiml, aimr);
		return ret;
 
	}
	void update(ll l, ll r, ll val)
	{
		_update(1, 1, n, l, r, val);//加并挂标记
	}
	void _update(ll i, ll l, ll r, ll aiml, ll aimr, ll val)
	{
		if (aiml <= l && r <= aimr)
		{
			d[i].val += val * (r - l + 1);
			d[i].t += val;
			return;
		}
 
 
		ll mid = l + (r - l) / 2;
		spread(i, l, r, aiml, aimr);
 
		if (aiml <= mid)
			_update(i * 2, l, mid, aiml, aimr, val);
		if (aimr >= mid + 1)
			_update(i * 2 + 1, mid + 1, r, aiml, aimr, val);
		//我们只对叶子更新了,(别多想懒标记)
		d[i].val = d[i * 2].val + d[i * 2 + 1].val;
	}
	ST(vector<T>arr)
	{
		a = arr;
		n = a.size() - 1;
		d = vector<node>(pow(2, (ll)log2(n) + 1 + 1) - 1 + 1);
		build_tree(1, 1, n);
	}
};

线段树2板子 区间加与乘

当对区间即有加操作,又有乘操作时:

//乘法满足分配率!!,所以乘懒标记可以“攻击”加懒标记
//策略:两个标记都安排
//当乘标记来临时,对自己和懒标记都乘//假设都没有向后延伸
//
//(特别好的分析:)
//当加标记来临时,正常加就好啦,因为乘已经对加处理啦
//
//两个一起来临呢,先乘!!!!!!!!!!!!!!!!!
//(乘已经对这部分加处理过了)
template<class T>
class ST//segment tree
{
	struct node
	{
		T val;
		T t1;
		T t2;//乘
		node(T v = 0) :val(v), t1(0), t2(1)//x2x3 == x6
		{}
	};
	ll n = a.size();
	vector<T>a;
	vector<node>d;
public:
	void build_tree(ll i, ll l, ll r)
	{
		if (l == r)
		{
			d[i].val = a[l] % MOD;
			return;
		}
		ll mid = l + (r - l) / 2;
		build_tree(i * 2, l, mid);
		build_tree(i * 2 + 1, mid + 1, r);
		d[i].val = d[i * 2].val + d[i * 2 + 1].val;
	}
	void spread(ll i, ll l, ll r, ll aiml, ll aimr)
	{
		//懒惰
		ll mid = l + (r - l) / 2;
		//if ((d[i].t1 != 0 || d[i].t2 != 1) && l != r)
		//{
		T t1 = d[i].t1, t2 = d[i].t2;
		//先乘
		d[i * 2].val = (d[i * 2].val * t2) % MOD;
		d[i * 2].t1 = (d[i * 2].t1 * t2) % MOD;
		d[i * 2].t2 = (d[i * 2].t2 * t2) % MOD;
		d[i * 2 + 1].val = (d[i * 2 + 1].val * t2) % MOD;
		d[i * 2 + 1].t1 = (d[i * 2 + 1].t1 * t2) % MOD;
		d[i * 2 + 1].t2 = (d[i * 2 + 1].t2 * t2) % MOD;
 
		//后加
		d[i * 2].val = (d[i * 2].val + t1 * (mid - l + 1)) % MOD;
		d[i * 2 + 1].val = (d[i * 2 + 1].val + t1 * (r - mid)) % MOD;
		d[i * 2].t1 = (d[i * 2].t1 + t1) % MOD;
		d[i * 2 + 1].t1 = (d[i * 2 + 1].t1 + t1) % MOD;
 
		//复原
		d[i].t1 = 0;
		d[i].t2 = 1;
		//}
		/// 
	}
	ll getsum(ll l, ll r)
	{
		return _getsum(1, 1, n, l, r);
	}
	ll _getsum(ll i, ll l, ll r, ll aiml, ll aimr)
	{
		if (aiml <= l && r <= aimr)
			return d[i].val;
 
		ll mid = l + (r - l) / 2;
		spread(i, l, r, aiml, aimr);
 
		ll ret = 0;
		if (aiml <= mid)
			ret = (ret + _getsum(i * 2, l, mid, aiml, aimr)) % MOD;
 
		if (aimr >= mid + 1)
			ret = (ret + _getsum(i * 2 + 1, mid + 1, r, aiml, aimr)) % MOD;
		return ret;
 
	}
	void update1(ll l, ll r, ll val)
	{
		_update1(1, 1, n, l, r, val);//加并挂标记
	}
	void _update1(ll i, ll l, ll r, ll aiml, ll aimr, T val)
	{
		if (aiml <= l && r <= aimr)
		{
			d[i].t1 = (d[i].t1 + val) % MOD;
			d[i].val = (d[i].val + val * (r - l + 1)) % MOD;
			return;
		}
 
		ll mid = l + (r - l) / 2;
		spread(i, l, r, aiml, aimr);
 
		if (aiml <= mid)
			_update1(i * 2, l, mid, aiml, aimr, val);
		if (aimr >= mid + 1)
			_update1(i * 2 + 1, mid + 1, r, aiml, aimr, val);
		d[i].val = (d[i * 2].val + d[i * 2 + 1].val) % MOD;
	}
	void update2(ll l, ll r, T val)
	{
		_update2(1, 1, n, l, r, val);//加并挂标记
	}
	void _update2(ll i, ll l, ll r, ll aiml, ll aimr,T val)
	{
		if (aiml <= l && r <= aimr)
		{
			d[i].val = (d[i].val * val) % MOD;
			d[i].t1 = (d[i].t1 * val) % MOD;
			d[i].t2 = (d[i].t2 * val) % MOD;
			return;
		}
 
		ll mid = l + (r - l) / 2;
		spread(i, l, r, aiml, aimr);
 
		if (aiml <= mid)
			_update2(i * 2, l, mid, aiml, aimr, val);
		if (aimr >= mid + 1)
			_update2(i * 2 + 1, mid + 1, r, aiml, aimr, val);
		d[i].val = (d[i * 2].val + d[i * 2 + 1].val) % MOD;
	}
	ST(vector<T>arr)
	{
		a = arr;
		n = a.size() - 1;
		d = vector<node>(pow(2, (ll)log2(n) + 1 + 1) - 1 + 1);
		build_tree(1, 1, n);
	}
};

线段树3板子 区间最值操作、区间历史最值

函数递归时,l,r可以存入节点node结构体中。递归时,相同的aiml,aimr,val,直接用类成员变量即可,第一次调用时及时修改。
(貌似在O(2)优化下这些修改并没有真正优化。)
因为最大值用了单独的懒标记t3,所以t3需要在区间乘的时候单独乘一下。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define endl "\n"
#define PII pair<int,int>
#define int long long
 
const int maxn = 5e5 + 5;
const int minv = -5e18;
int MOD = 1e17;
class ST//segment tree
{
	struct node
	{
		ll val;//区间和
		ll maxa;//区间最大值
		ll seca;//区间次大值
		ll maxb;//区间历史最大值
		ll maxn;//最大值数目 用于最大值修改
 
		int t1;//加懒标记
		int maxt1;//不是最大值也要统计maxb,也需要最大懒标记
		int t2;//乘懒标记
		int t3;//最大值专属懒标记 VIP
		int maxt3;//期间最大加懒标记
 
		int l, m, r;
 
		node(int v = 0) :val(v), maxa(0), seca(-2e9), maxb(0), maxn(1),
			t1(0), maxt1(0), t2(1), t3(0), maxt3(0), l(0), m(0), r(0)
		{}
	};
	int aiml, aimr;
	int val;
 
	int n = a.size();
	vector<ll>a;
	vector<node>d;
	void build_tree(int i, int l, int r)
	{
		d[i].l = l, d[i].m = l + (r - l) / 2, d[i].r = r;
		if (l == r)
		{
			d[i].val = d[i].maxa = d[i].maxb = a[l] ;
			return;
		}
		build_tree(i * 2, l, d[i].m);
		build_tree(i * 2 + 1, d[i].m + 1, r);
		push_up(i);
	}
	void push_up(int i)
	{
		d[i].val = (d[i * 2].val + d[i * 2 + 1].val) ;
		d[i].maxa = max(d[i * 2].maxa, d[i * 2 + 1].maxa);
		d[i].maxb = max(d[i * 2].maxb, d[i * 2 + 1].maxb);
		//不过确实有多个最大值就错了
		if (d[i * 2].maxa == d[i * 2 + 1].maxa)
		{
			d[i].seca = max(d[i * 2].seca, d[i * 2 + 1].seca);
			d[i].maxn = d[i * 2].maxn + d[i * 2 + 1].maxn;
		}
		else if (d[i * 2].maxa > d[i * 2 + 1].maxa)
		{
			d[i].seca = max(d[i * 2].seca, d[i * 2 + 1].maxa);
			d[i].maxn = d[i * 2].maxn;
		}
		else// if (d[i * 2].maxa < d[i * 2 + 1].maxa)
		{
			d[i].seca = max(d[i * 2].maxa, d[i * 2 + 1].seca);
			d[i].maxn = d[i * 2 + 1].maxn;
		}
	}
	void change(int i, int t1, int maxt1, int t2, int t3, int maxt3)
	{
		auto& self = d[i];
 
		//self.val = self.val * t2%MOD;
		//self.maxa = self.maxa * t2;
		//self.seca = self.seca * t2;
		//self.t1 = self.t1*t2%MOD;
		//self.t3 = self.t3 * t2 % MOD;
		//self.t2 = self.t2*t2%MOD;
 
		self.val = ((self.val + t1 * (d[i].r - d[i].l + 1 - self.maxn) )  + t3 * self.maxn) ;
		self.maxb = max(self.maxb, self.maxa + maxt3);
		self.maxa += t3;
		if (self.seca != -2e9)
			self.seca += t1;
 
		self.maxt1 = max(self.maxt1, self.t1 + maxt1);
		self.t1 = (self.t1 + t1) ;
		self.maxt3 = max(self.maxt3, self.t3 + maxt3);
		self.t3 = (self.t3 + t3) ;
	}
	void push_down(int i)
	{
		//懒惰
		int t1 = d[i].t1, maxt1 = d[i].maxt1, t2 = d[i].t2, t3 = d[i].t3, maxt3 = d[i].maxt3;
		auto& lchild = d[i * 2], & rchild = d[i * 2 + 1];
		int maxatmp = max(lchild.maxa, rchild.maxa);
 
		if (lchild.maxa == maxatmp)
			change(i * 2, t1, maxt1, t2, t3, maxt3);
		else
			change(i * 2, t1, maxt1, t2, t1, maxt1);//没专属
		if (rchild.maxa == maxatmp)
			change(i * 2 + 1, t1, maxt1, t2, t3, maxt3);
		else
			change(i * 2 + 1, t1, maxt1, t2, t1, maxt1);
 
		//复原
		d[i].t1 = d[i].maxt1 = d[i].maxt3 = d[i].t3 = 0;
		d[i].t2 = 1;
	}
	ll _getsum(int i)
	{
		if (d[i].l > aimr || d[i].r < aiml)return 0;
		if (aiml <= d[i].l && d[i].r <= aimr)return d[i].val;
 
		push_down(i);
 
		return (_getsum(i * 2) + _getsum(i * 2 + 1)) ;
	}
	ll _getmaxa(int i)
	{
		if (d[i].l > aimr || d[i].r < aiml)return LLONG_MIN;
		if (aiml <= d[i].l && d[i].r <= aimr)return d[i].maxa;
 
		push_down(i);
 
		return max(_getmaxa(i * 2), _getmaxa(i * 2 + 1));
	}
	ll _getmaxb(int i)
	{
		if (d[i].l > aimr || d[i].r < aiml)return LLONG_MIN;
		if (aiml <= d[i].l && d[i].r <= aimr)return d[i].maxb;
 
		push_down(i);
 
		return max(_getmaxb(i * 2), _getmaxb(i * 2 + 1));
	}
	void _update1(int i)
	{
		if (d[i].l > aimr || d[i].r < aiml)return;
		if (aiml <= d[i].l && d[i].r <= aimr)
		{
			d[i].val = (d[i].val + val * (d[i].r - d[i].l + 1));
			d[i].maxa = d[i].maxa + val;
			d[i].maxb = max(d[i].maxb, d[i].maxa);
			if (d[i].seca != -2e9)
				d[i].seca += val;
 
			d[i].t1 = (d[i].t1 + val);
			d[i].t3 = (d[i].t3 + val);
			d[i].maxt1 = max(d[i].maxt1, d[i].t1);
			d[i].maxt3 = max(d[i].maxt3, d[i].t3);
			return;
		}
 
		push_down(i);//因为要向下搜了,所以把当前的懒标记给下面兑现一下
 
		_update1(i * 2);
		_update1(i * 2 + 1);
		push_up(i);
	}
	void _update2(int i)
	{
		if (d[i].l > aimr || d[i].r < aiml)return;
		if (aiml <= d[i].l && d[i].r <= aimr)
		{
			d[i].val = (d[i].val * val);
			d[i].t1 = (d[i].t1 * val);
			d[i].t3 = (d[i].t3 * val);
			d[i].t2 = (d[i].t2 * val);
			return;
		}
 
		push_down(i);
 
		_update2(i * 2);
		_update2(i * 2 + 1);
		push_up(i);
	}
	void _update_min(int i)
	{
		if (d[i].l > aimr || d[i].r < aiml || d[i].maxa <= val)return;
		if (aiml <= d[i].l && d[i].r <= aimr && d[i].seca < val)
		{
			int k = d[i].maxa - val;
 
			d[i].val -= d[i].maxn * k;
			d[i].maxa = val;
 
			d[i].t3 -= k;
			return;
		}
 
		push_down(i);
 
		_update_min(i * 2);
		_update_min(i * 2 + 1);
		push_up(i);
	}
public:
	ll getsum(int l, int r)
	{
		aiml = l, aimr = r;
		return _getsum(1);
	}
	ll getmaxa(int l, int r)
	{
		aiml = l, aimr = r;
		return _getmaxa(1);
	}
	ll getmaxb(int l, int r)
	{
		aiml = l, aimr = r;
		return _getmaxb(1);
	}
	void update1(int l, int r, ll val)
	{
		aiml = l, aimr = r;
		this->val = val;
		_update1(1);//加并挂标记
	}
	void update2(int l, int r, ll val)
	{
		aiml = l, aimr = r;
		this->val = val;
		_update2(1);//加并挂标记
	}
	void update_min(int l, int r, ll val)
	{
		aiml = l, aimr = r;
		this->val = val;
		_update_min(1);
	}
	ST(vector<ll>arr)
	{
		a = arr;
		n = a.size() - 1;
		d = vector<node>(4 * n);
		build_tree(1, 1, n);
		a = {};//清空a数组
	}
};
 
//区间加完,子区间最大值也加
//交汇部分需要再比比
 
signed main()
{
	ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
 
	int n, m;
	cin >> n >> m;
	vector<int>arr(1 + n);
	for (int i = 1; i <= n; i++)
		cin >> arr[i];
	ST demo(arr);
	for (int i = 0; i < m; i++)
	{
		int op, l, r, val;
		cin >> op >> l >> r;
		switch (op)
		{
		case 1:
			cin >> val;
			demo.update1(l, r, val);
			break;
		case 2:
			cin >> val;
			demo.update_min(l, r, val);
			break;
		case 3:
			cout << demo.getsum(l, r) << endl;
			break;
		case 4:
			cout << demo.getmaxa(l, r) << endl;
			break;
		case 5:
			cout << demo.getmaxb(l, r) << endl;
			break;
		}
	}
	return 0;
}

6.树状数组1板子 可修改单个点的前缀和

请添加图片描述

树状数组中,规定 c[x] 管辖的区间长度为 2 k 2^{k} 2k,其中:

设二进制最低位为第 0 位,则 k 恰好为 x 二进制表示中,最低位的 1 所在的二进制位数;
2^k(c[x] 的管辖区间长度)恰好为 x 二进制表示中,最低位的 1 以及后面所有 0 组成的数。

对于lowbit的证明,注意正数的原码反码和补码是相同的。

add函数给该节点增加值后,while循环一直找父节点加值。

template<class T>
class BIT//Binary Indexed Tree
{
public:
	ll n;//a的大小
	vector<T>a;//原数组
	vector<T>c;//树状数组
	ll lowbit(ll a)
	{
		return a & -a;
	}
	T getsum(ll i)
	{
		T sum = 0;
		while (i > 0)
		{
			sum += c[i];
			i -= lowbit(i);
		}
		return sum;
	}
	void add(ll i, T v)
	{
		while (i <= n)
		{
			c[i] += v;
			i = i + lowbit(i);
		}
	}
	BIT(vector<T>_a)
	{
		a = _a;
		n = a.size() - 1;
		c = vector<T>(n + 1);
		//直接把树建好
		for (ll i = 1; i <= n; i++)
		{
			add(i, a[i]);
		}
	}
};

7.树状数组2板子 差分数组快速区间加 求某个数

add可以给一个数加值

如果想给一段区间加值,有没有更快的操作:add1

实际上,这个是差分数组,差分的前缀和就是这个位置的数值,所以是用来求单个数的

template<class T>
class BIT//Binary Indexed Tree
{
public:
	ll n;//a的大小
	vector<T>a;//原数组
	vector<T>c;//树状数组//还是求和,只不过传过来的是差分了
	ll lowbit(ll a)
	{
		return a & -a;
	}
	T getsum(ll i)
	{
		T sum = 0;
		while (i > 0)
		{
			sum += c[i];
			i -= lowbit(i);
		}
		return sum;
	}
	void add(ll i, ll v)
	{
		while (i <= n)
		{
			c[i] += v;
			i += lowbit(i);
		}
	}
	void add1(ll l, ll r, ll v)
	{
		add(l, v);
		add(r + 1, -v);
	}
	BIT(vector<T>_a)
	{
		a = _a;
		n = a.size() - 1;
		c = vector<T>(n + 1);
		//直接把树建好
		for (ll i = 1; i <= n; i++)
		{
			add(i, a[i]);
		}
	}
};

使用示范:

//差分构造:
void solve()
{
	int n, m;
	cin >> n >> m;
	vector<int>arr(n + 1);
	for (int i = 1; i <= n; i++)
	{
		cin >> arr[i];
	}
	vector<int>d(n + 1);
	d[1] = arr[1];
	for (int i = 2; i <= n; i++)
	{
		d[i] = arr[i] - arr[i - 1];
	}
	BIT<int> demo(d);
 
	/// <summary>
 
	for (int i = 1; i <= m; i++)
	{
		int op;
		cin >> op;
		if (op == 1)
		{
			int x, y, k;
			cin >> x >> y >> k;
			demo.add1(x, y, k);
		}
		else if (op == 2)
		{
			int x;
			cin >> x;
			cout << demo.getsum(x) << endl;
		}
	}
}

8.manacher板子 快速求最长回文串的长度

原理

r记录当前最右的回文(l(左)与之对应),这样我们后来在r中偏右进行判断时,因为l r之间是回文,所以可以参照中偏左对应的位置,少判断许多次。

使用示范,本板子是加#(奇偶长度一起算)的:

d[i]表示以位置i为中心的最长回文串的半径长度

d数组的值-1即是本位置最长回文长度,原因看最下面注释。

void solve()
{
	string str, aim;
	cin >> str;
	aim += "#";
	for (int i = 0; i < str.size(); i++)
	{
		aim += str[i];
		aim += "#";
	}
 
	vector<int>d(aim.size());
 
	//  abcba
	auto manacher = [&](string s) {
		int l = 0, r = -1;
		for (int i = 0; i < s.size(); i++)
		{
			int k = i > r ? 1 : min(d[l + r - i], r - i + 1);//左边对称相同,但不越界
			//k是半径,加了等于下一位
			//朴素算法
			while (i - k >= 0 && i + k <= s.size() && s[i - k] == s[i + k])
				k++;
			d[i] = k;
			if (i + d[i] - 1 > r)
			{
				r = i + d[i] - 1;
				l = i - d[i] + 1;
			}
		}
	};
	manacher(aim);
	int ans = 0;
	for (auto x : d)
	{
		ans = max(ans, x);
	}
    //d[i]表示i(不包括i)左右的对称的长度
	// # a # b # a #
	//		 - - - -
	// # a # b # b # a #
	//		   - - - - -
	cout << ans - 1;
}

单独lamda:


   //  abcba
   auto manacher = [&](string s) {
   	int l = 0, r = -1;
   	for (int i = 0; i < s.size(); i++)
   	{
   		int k = i > r ? 1 : min(d[l + r - i], r - i + 1);//左边对称相同,但不越界
   		//k是半径,加了等于下一位
   		//朴素算法
   		while (i - k >= 0 && i + k <= s.size() && s[i - k] == s[i + k])
   			k++;
   		d[i] = k;
   		if (i + d[i] - 1 > r)
   		{
   			r = i + d[i] - 1;
   			l = i - d[i] + 1;
   		}
   	}
   };

————

OI Wiki摘录的只算单数和双数的:

vector<int> d1(n);
for (int i = 0, l = 0, r = -1; i < n; i++) {
  int k = (i > r) ? 1 : min(d1[l + r - i], r - i + 1);
  while (0 <= i - k && i + k < n && s[i - k] == s[i + k]) {
    k++;
  }
  d1[i] = k--;
  if (i + k > r) {
    l = i - k;
    r = i + k;
  }
}
vector<int> d2(n);
for (int i = 0, l = 0, r = -1; i < n; i++) {
  int k = (i > r) ? 0 : min(d2[l + r - i + 1], r - i + 1);
  while (0 <= i - k - 1 && i + k < n && s[i - k - 1] == s[i + k]) {
    k++;
  }
  d2[i] = k--;
  if (i + k > r) {
    l = i - k - 1;
    r = i + k;
  }
}

9.ST表板子 类似归并的有条理暴力 sparse-table

1.原理是“倍增”,直到两个长度为1的就可以合成一个长度为2的,两个2合成4,两个4合成8。

2.最后使用时没必要追求“正好匹配”,可以在范围内取多点:

比如看48长度为5(45678),我们取长度为4,看47与5~8的最大值哪个更大即可。

ST表部分的代码:

//ST表
	vector<vector<int>>st(30,vector<int>(n+1));//len = 2的i次方
	int len = 1;
	for (int pow = 0; len <= n; pow++, len *=2)
	{
		for (int left = 1; left <= n- len+1; left++)
		{
			if (pow == 0)
				st[0][left] = arr[left];
			else
			{
				st[pow][left] = max(st[pow - 1][left], st[pow - 1][min(left + len / 2,n)]);
			}
		}
	}

使用示范:

void solve()
{
	int n, m;
	cin >> n >> m;
	vector<int>arr(n+1);
	for (int i = 1; i <= n; i++)
	{
		cin >> arr[i];
	}
	//ST表
	vector<vector<int>>st(30,vector<int>(n+1));//len = 2的i次方
	int len = 1;
	for (int pow = 0; len <= n; pow++, len *=2)
	{
		for (int left = 1; left <= n- len+1; left++)
		{
			if (pow == 0)
				st[0][left] = arr[left];
			else
			{
				st[pow][left] = max(st[pow - 1][left], st[pow - 1][min(left + len / 2,n)]);
			}
		}
	}
	for (int i = 1; i <= m; i++)
	{
		int l, r;
		cin >> l >> r;
		//l+len-1<=r	len = 2的k次方
		//len <= r-l+1
		//k <= log(r-l+1);
		int k = log2(r - l + 1);
		cout << max(st[k][l], st[k][r-pow(2,k)+1]) << endl;
	}
}

10.LCA倍增板子

预处理:

void solve()
{
	int n, k;
	cin >> n >> k;
	vector<vector<int>>alist(n + 1);
	for (int i = 1; i <= n - 1; i++)
	{
		int x, y;
		cin >> x >> y;
		alist[x].push_back(y);
		alist[y].push_back(x);
	}
	vector<vector<int>>fa(n + 1, vector<int>(22));
	vector<int>dep(n + 1);
 
	vector<int>leaf;
	auto dfs = [&](int cur, int pa, auto dfs)->void {
		dep[cur] = dep[pa] + 1;
		if (alist[cur].size() == 1)
		{
			leaf.push_back(cur);
		}
		for (auto x : alist[cur])
		{
			if (x != pa)
			{
				fa[x][0] = cur;
				dfs(x, cur, dfs);
			}
		}
	};
	dfs(1, 0, dfs);
	//倍增求父亲
	for (int p = 1; p < 22; p++)
	{
		for (int i = 1; i <= n; i++)
		{
			fa[i][p] = fa[fa[i][p - 1]][p - 1];
		}
	}

LCA:

auto LCA = [&](int a, int b)->pair<int, int>
{
	ll ans = 0;
	if (dep[a] < dep[b])swap(a, b);
 
	while (dep[a] > dep[b])
	{
		int dis = (int)log2(dep[a] - dep[b]);
		a = fa[a][dis];
		ans += pow(2, dis);
	}
 
	for (int i = log2(dep[a]); i >= 0; i--)
	{
		if (fa[a][i] != fa[b][i])	//向上结果不同才跳
		{
			a = fa[a][i];
			b = fa[b][i];
			ans += pow(2, i) * 2;
		}
	}
	if (a != b)
	{
		a = b = fa[a][0];
		ans += 2;
	}
	return { a ,ans };
};

第一个让a,b深度相同的操作是while进行的,二进制拆分。

主函数外版:

inline int LCA(int a,int b)
{
	if (dep[a] < dep[b])swap(a, b);
	while (dep[a] > dep[b])
	{
		int dis = (int)log2(dep[a] - dep[b]);
		a = fa[a][dis];
	}
	if (a == b)return a;
	for (int i = log2(dep[a]); i >= 0; i--)
	{
		if (fa[a][i] != fa[b][i])
		{
			a = fa[a][i];
			b = fa[b][i];
		}
	}
	if (a != b)
	{
		a = b = fa[a][0];
	}
	return a;
}

使用示范:(链式前向星等,POJ 3417 Network 树上差分 LCA 链式前向星 仍超时,加上快读过-CSDN博客)

struct node
{
	int b, next;
}edges[maxn*2];
int head[maxn];
int k = 0;
inline void add(int a, int b)
{
	k++;
	edges[k].b = b;
	edges[k].next = head[a];
	head[a] = k;
}
int fa[maxn][23];
int dep[maxn];
void dfs1(int cur ,int pa)
{
	dep[cur] = dep[pa] + 1;
	fa[cur][0] = pa;
	for (int p = 1; p < 22; p++)
		fa[cur][p] = fa[fa[cur][p - 1]][p - 1];
 
	for (int i = head[cur]; i > 0; i = edges[i].next)
	{
		if(edges[i].b != pa)
			dfs1(edges[i].b, cur);
	}
}
inline int LCA(int a,int b)
{
	if (dep[a] < dep[b])swap(a, b);
	while (dep[a] > dep[b])
	{
		int dis = (int)log2(dep[a] - dep[b]);
		a = fa[a][dis];
	}
	if (a == b)return a;
	for (int i = log2(dep[a]); i >= 0; i--)
	{
		if (fa[a][i] != fa[b][i])
		{
			a = fa[a][i];
			b = fa[b][i];
		}
	}
	if (a != b)
	{
		a = b = fa[a][0];
	}
	return a;
}
int diff[maxn];
int pass[maxn];
int cnt0, cnt1;
void dfs2(int cur,int pa)
{
	pass[cur] += diff[cur];
	for (int i = head[cur]; i > 0; i = edges[i].next)
	{
		if (edges[i].b != pa)
		{
			dfs2(edges[i].b, cur);
			pass[cur] += pass[edges[i].b];
		}
	}
}

11.KMP板子 前缀跳后缀 ;前缀函数

原理:

当选择的前缀和后缀比较出现不同时,本应结束了,

然而如果匹配串已匹配部分有相同的前缀和后缀,匹配串可以整体向后跳,接着比。
请添加图片描述

如图,在原串中找匹配串(模式串),原串中abeab都相同,最后一个位置不相同了。

nxt数组初始化原理 (前缀函数的优化):

建议阅读:前缀函数与 KMP 算法 - OI Wiki

我这里概括并通俗的解释一下:

前缀函数指的是每个位置为末尾的前缀子串中 ,该子串前缀和后缀 最大相同长度。

(如上图,上面箭头指到我们当前要比较位置且出现不相同,此时匹配串前移一部分接着比即可)

nxt数组几乎就是前缀函数,但是nxt是用来往前跳的(不相同时,模式串下一个要比的位置),而且是跳到相同前缀的下一个不同的位置,用来后续接着比较。

对于构造前缀函数,朴素做法就是蛮力法,每个位置从大到小挨个试。n个位置,每个位置n次,每个比较长度是n,所以是O(n^3)的复杂度。

OI Wiki的优化1:

在这里插入图片描述

此图表示 i 位置最大相同前缀长度是3了,那么i+1位置,最长也是4。

所以上界可以改为4。

我初看以为是常数优化,然而不是的。

如果前面前缀函数值小,后面遍历的次数也少了。

如果前面大,后面就算遍历多,再下一次会很小。

最糟情况的是每次都只比一次就成功,一直攒(只能一个一个攒),最后一次再遍历,所以最多比较次数就是OI Wiki说的 n-1 + n-2 == 2n-3 。 每次比是 n ,所以复杂度为O(n^2)

优化2:

这个优化才是重头戏

配好一次后,下一个位置可以直接接着比,如果可以直接得到 +1 的相同前缀长度。

a.如果不同:

b.先不考虑怎么找 j,而是看下这个规律。

在这里插入图片描述

c.而这,就是此前 pai [ pai [i] - 1 ] 已经求出的结果

在这里插入图片描述

d.应用到KMP是这样的:

在这里插入图片描述

(当然如上文提及,仍要记着这里每个位置求的是最长前缀长度。而KMP的nxt数组存的是前跃后下一个比较的位置。)

算法时间复杂度就是O(n)了。

可以想后缀跳前缀,几次就能跳完。

极端情况全是aaaaaaa,最后有一个b。

那么也只有b这里需要前跃n次。而前面一次也不用前跃。

nxt数组初始化的实现:

1.首先要初始化KMP数组,或着说是nxt数组。这个是模式串用来向前跳的。

(这里初始化和后面匹配的方法大同小异,比较策略都是原串 下标 i 从1 到 m ,一次只比一个位置,模式串位置 j 不合适时就一直往前跳。 不为什么 )

初始化过程:

在这里插入图片描述

每个位置都及时更新nxt数组的值,值就是模式串下标。显而易见,上图中相同部分就是记录的相同前后缀的长度。

//本题s1是原串,s2是模式串,m,n分别是其对应长度
//本板子字符串下标从1开始,0位置作为出口,用处如下:
void init_next()
{
	int j = 0;
	for (int i = 2; i < n; i++)
	{
		while (j&&s2[i] != s2[j+1])//不相同就前跃,直到相同,或者全不同 j==0
			j = nxt[j];
 
		if (s2[i] == s2[j + 1])j++;//相同就接着往后比
 
		nxt[i] = j;//可更新
	}
}

参考代码:

#include<bits/stdc++.h>
using namespace std;
 
const int maxn = 1e6;
string s1, s2;
int m, n;
int nxt[maxn];
 
void init_next()
{
	int j = 0;
	for (int i = 2; i < n; i++)
	{
		while (j&&s2[i] != s2[j+1])
			j = nxt[j];
 
		if (s2[i] == s2[j + 1])j++;
 
		nxt[i] = j;
	}
}
vector<int>ret;
void kmp()
{
	int j = 0;
	for (int i = 1; i < m; i++)
	{
		while (j && s1[i] != s2[j + 1])
			j = nxt[j];
 
		if (s1[i] == s2[j + 1])j++;
 
		if (j == n - 1)
		{
			ret.emplace_back(i - (n - 2));
			j = nxt[j];
		}
	}
}
int main()
{
	cin >> s1 >> s2;
	s1 = ' ' + s1;s2 = ' ' + s2;
	m = s1.size(), n = s2.size();
 
	init_next();
	kmp();
 
	for (int x : ret)
		cout << x << endl;
	for (int i = 1; i < s2.size(); i++)
		cout << nxt[i] << " ";
 
	return 0;
}

参考代码2: string从下标0开始的,nxt[0]为-1的写法:

#include<bits/stdc++.h>
using namespace std;
 
const int maxn = 2e7+5;
 
//可以像kmp那样,顺便更新其他位置
 
string s1, s2;
int nxt[maxn];
int m, n;
 
void init_nxt()
{
	nxt[0] = -1;
	int j = 0;
	for (int i = 1; i < n; i++)
	{
		while (j!=-1&&s2[i] != s2[j])j = nxt[j];
 
		nxt[i+1] = j+1;//相等所以可以调到这个位置
 
		if (j == -1 || s2[i] == s2[j])j++;
	}
}
 
vector<int>ret;
void kmp()
{
	int j = 0;
	for (int i = 0; i < m; i++)
	{
		while (j != -1 && s1[i] != s2[j])j = nxt[j];
 
		if(j == -1 || s1[i] == s2[j])j++;
		if (j == n)
		{
			ret.emplace_back(i-n+2);
			j = nxt[j];
		}
	}
}
 
int main()
{
	cin >> s1 >> s2;
	m = s1.size(), n = s2.size();
	init_nxt();
	kmp();
 
	for (auto x : ret)
		cout << x << endl;
	for (int i = 1; i <= n; i++)
		cout << nxt[i] << " ";
	return 0;
}

11.5.扩展 KMP/exKMP(Z 函数);后缀函数

z函数是后缀函数,即从字符串每个位置开始的子串 (这就是后缀) 与 整个字符串 相同的长度。

KMP与拓展KMP的区别:
kmp构造使用nxt数组,exkmp使用z数组
nxt数组存的是与模式串前缀相同的,每个下标前的前缀中的后缀,的最大长度+1,且存到下一个位置,因为要接着比
z数组存的是与模式串前缀相同的,模式串每个下标起始的后缀中的前缀,的最大长度

简单说下这个Z函数快在哪里:
我们构建z函数,设strlen(str) = n,则我们从 1 构建到 n-1。

如下图,对于4开始的位置,长度有3 (下标4,5,6),所以z[4] = 3

那么对于下一波来说,5 6 和 1 2 是已知相同的。 那么这个时候我们直接用z[1]不就行了。

这是复用。

(例:如果z[1]很长,让我们这里超过了6,那就从6接着比。否则就直接拿答案了。)

在这里插入图片描述

参考代码:

许多板子让z[0] = 0 ,其实是r = -1就可以避免这个。

#include<bits/stdc++.h>
using namespace std;
 
#define int long long
const int maxn = 2e7 + 5;
 
string s1, s2;
int z[maxn];
int p[maxn];
int m, n;
 
//自己和自己匹配
// 
//# 0.模式串始终是从头开始的,所以各个位置的前缀一定是相同的
//
//# 1.得到 0 ~ r-l 与 l ~ r 是相同的前缀
//				^ 
//# 2.【复用子部分】那么之后的i中, i ~ r ,等同于前面 i-l ~ r-l
//															  ^
//# 3.而前面这段是比过的,既然相同,直接用,接着比即可
//
int l, r;
void init_z()
{
	l = r = -1;
	z[0] = n;
	for (int i = 1; i < n; i++)
	{
		if (i <= r)
		{
			//比的是 0 和 i 起始的串 
			//可复用,z[i]不用从0开始比
 
			//l -> 0  
			//i -> i-l
			//我们看 i-l 和 0 最长是多少
 
			//类似马拉车,复用也不能超r
			//if (z[i - l] < r - i + 1)//小于就能确定后面不相等,等于不行
			//{
			//	z[i] = z[i - l];
			//	continue;
			//}
			//else
			//	z[i] = r - i + 1;
 
			z[i] = min(r - i + 1, z[i - l]);
		}
 
		while (i + z[i] < n && s2[z[i]] == s2[i + z[i]])
			z[i]++;
 
		if (i + z[i] - 1 > r)//已触及的尾
			l = i, r = i + z[i] - 1;
	}
}
 
void init_p()
{
	l = r = -1;
	// r - l 的最值是 模式串的长度哦
	//一句话,转移前去看z
	//exKMP
 
	for (int i = 0; i < m; i++)
	{
		if (i <= r)//这里z不一定是0
			p[i] = min(r - i + 1, z[i - l]);
	
 
		while (i + p[i] < m && p[i] < n && s2[p[i]] == s1[i + p[i]])
			p[i]++;
 
		if (i + p[i] - 1 > r)
			l = i, r = i + p[i] - 1;
 
	}
}
 
signed main()
{
 
	cin >> s1 >> s2;
	m = s1.size(), n = s2.size();
	init_z();
	init_p();
	int ans1 = 0, ans2 = 0;
	for (int i = 0; i < n; i++)
	{
		ans1 ^= (i + 1) * (z[i] + 1);
	}
	for (int i = 0; i < m; i++)
	{
		ans2 ^= (i + 1) * (p[i] + 1);
	}
	cout << ans1 << endl;
	cout << ans2 << endl;
	return 0;
}

12.扫描线板子 小思路

前言:

本板子是结合我的线段树1板子和OIWIKI的扫描线写成的类。

线段树1板子 区间加-CSDN博客

扫描线 - OI Wiki (oi-wiki.org)

背景:

照着OI WIKI打了一遍,结果洛谷交上去RE,查了半天查不出来,最后看讨论区,给线段树大小再乘个2,就过了。。

我还数组以为太大了呢

本题数组并不大:
请添加图片描述

本题的xy是坐标,看的是坐标间的长度,应该是线段树进行二分的时候都要有mid,所以会多分几次。

扫描线原理:

我们从下往上扫吧。

离散化就是把出现的x坐标放到数组里,排好序,数组里只有我们要的x。

离散化x后对这个数组进行建树。

然后我们从下往上是根据y坐标进行的,所以每个y捆绑对应的x1,x2,以及加或减。

//这就是整个策略了。

代码:

#define ll long long
#define endl "\n"
#define int long long
const ll inf = 1e9;
 
template<class T>
class ST//segment tree
{
	struct node
	{
		T l, r, sum;
		T t;//懒标记//服务后代
		node() :l(0), r(0), sum(0), t(0)
		{}
	};
	ll n;
	vector<T>a;
	vector<node>d;
	//扫描线中,上面的node中的l,r代表矩形左右
	//下面的l,r是线段树的下标,每个a表示的是一个横坐标
public:
	void push_up(ll i)
	{
		if (d[i].t > 0)//扫描到了
			d[i].sum = d[i].r - d[i].l;
		else
			d[i].sum = d[i * 2].sum + d[i * 2 + 1].sum;
	}
	//直到最左和最右范围,但是不知道其中的和
	void build_tree(ll i, ll l, ll r)
	{
		ll mid = l + (r - l) / 2;
		if (l + 1 < r)
		{
			d[i].l = a[l];
			d[i].r = a[r];
			build_tree(i * 2, l, mid);
			build_tree(i * 2 + 1, mid, r);
			push_up(i);
		}
		else
		{
			d[i].l = a[l];
			d[i].r = a[r];
			d[i].sum = 0;
		}
	}
	void update(ll l, ll r, ll val)
	{
		_update(1, l, r, val);//加并挂标记
	}
	void _update(ll i, ll l, ll r, ll val)
	{
		if (d[i].l == l && d[i].r == r)
		{
			d[i].t += val;
			push_up(i);
			return;
		}
		else
		{
			//中分
			if (d[i * 2].r > l)
				_update(i * 2, l, min(d[i * 2].r, r), val);//r在下一个内就不多传了
			if (d[i * 2 + 1].l < r)
				_update(i * 2 + 1, max(l, d[i * 2 + 1].l), r, val);
			push_up(i);
		}
	}
	T get_sum()
	{
		return d[1].sum;
	}
	ST(vector<T>arr)
	{
		a = arr;
		n = a.size() - 1;
		d = vector<node>(2*pow(2, (ll)log2(n) + 1 + 1) + 1);
		build_tree(1, 1, n);
	}
};
struct scanline
{
	int l, r, h;
	int mark;
	bool operator <(const scanline b)const
	{
		return h < b.h;
	}
};
//总的sum统计了此刻矩形的长度,update一直在更新这个长度
void solve()
{
	int n; cin >> n;
	vector<int>xaxis;
	vector<scanline>yaxis;
	//x离散化用来服务线段树
	//y该多少个就多少个,遇到就改,离散化了求得高度差,同层是0
 
	//该加加,该减减,区间求和改成求长度吧
	xaxis.push_back(0);
	yaxis.push_back({});
	for (int i = 1; i <= n; i++)
	{
		int x1, y1, x2, y2;
		cin >> x1 >> y1 >> x2 >> y2;
		xaxis.push_back(x1);
		xaxis.push_back(x2);
		yaxis.push_back({ x1,x2,y1,1 });
		yaxis.push_back({ x1,x2,y2,-1 });
	}
	sort(xaxis.begin() + 1, xaxis.end());
	sort(yaxis.begin() + 1, yaxis.end());
	unique(xaxis.begin() + 1, xaxis.end());
	ST<int> demo(xaxis);
	int ans = 0;
	for (int i = 1; i < yaxis.size() - 1; i++)//最后一次不用算了
	{
		demo.update(yaxis[i].l, yaxis[i].r, yaxis[i].mark);
		ans += demo.get_sum() * (yaxis[i + 1].h - yaxis[i].h);
	}
	cout << ans;
}
signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	int t = 1;
	//cin >> t;
	while (t--)
	{
		solve();
	}
	return 0;
}

13.龟速乘板子 a*二进制拆分的正数b(mod p)

如果要乘负数b,先乘正的,最后结果加负号即可。

ll mul(ll a, ll b, ll p) {
	// 将乘法变为加法,二进制优化,边加边模
	ll ans = 0;
	while (b) {
		if (b & 1)
			ans = (ans + a) % p;
		a = (a + a) % p;
		b >>= 1;
	}
	return ans;
}

14.拓展欧几里得法求逆元

板子:

x即为最终答案,x可能为负数,加模数即可

乘法逆元 - OI Wiki (oi-wiki.org)

void exgcd(int a, int b, int& x, int& y) {
	if (b == 0) {
		x = 1, y = 0;
		return;
	}
	exgcd(b, a % b, y, x);
	y -= a / b * x;
}

使用:

	exgcd(a, n + 1, x, y);//x就是逆元
	while (x <= 0)x += n + 1;

原理:

最大公约数 - OI Wiki (oi-wiki.org)
请添加图片描述

拓展欧几里得算法:

int Exgcd(int a, int b, int &x, int &y) {
  if (!b) {
    x = 1;
    y = 0;
    return a;
  }
  int d = Exgcd(b, a % b, x, y);
  int t = x;
  x = y;
  y = t - (a / b) * y;
  return d;
}

15.二分图板子 匈牙利算法 KM算法

KM算法

原理:

匈牙利算法:二分图最大权匹配 - OI Wiki

简单说就是挨个找,找到就退出。后面的来了就让前面的挪位置。

板子:

book指给u找位置时,有人考虑过的位置就不考虑了。

match[ i ]就是i位置对应的人。

e是关系

int book[10001];
int match[10001];
bool e[101][101];
int ans=0,n=0,m=0;
bool dfs(int u)
{
    for(int i=1;i<=n;i++)
    {
        if(book[i]==0 && e[u][i]==true)
        {
            book[i]=1;
            if(match[i]==0 || dfs(match[i])==true)
            {
                match[u]=i;
                match[i]=u;
                return true;
            }
        }
    }
    return false;
}

使用:

int main()
{
    scanf("%d %d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        int x=0,y=0;
        scanf("%d %d",&x,&y);
        e[x][y]=true;
        e[y][x]=true;
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            book[j]=0;
        }
        if(dfs(i)==true)
        {
            ans++;
        }
    }
    printf("%d",ans);
    return 0;
}

16.组合数板子 卢卡斯定理

1.直接求组合数:

组合数C(n,m),n个里面选m个,结果为 n ! / ( n − m ) ! m ! \frac{n! / (n-m)!}{m!} m!n!/(nm)!(前者其实就是n* n-1*…*n-m+1,分子分母都是m个数相乘)

ksm快速幂求的是逆元。用的是费马小定理,适用于模数为素数的时候。

快速幂板子

(板子中a是阶乘数组,预处理一下)

a[0] = 1;
for(int i=1;i<=n+k;i++)
	a[i] = i*a[i-1]%mod;
ll ksm(int x, int y, int mod) 
{
	if (x == 1) return 1;
	ll res = 1, base = x;
	while (y) {
		if (y & 1) res = (res * base) % mod;
		base = (base * base) % mod;
		y >>= 1;
	}
	return res;
}
ll C(ll n, ll m, ll p)
{
	if (m > n)return 0;
	return ((a[n] * ksm(a[m], p - 2, p)) % p * ksm(a[n - m], p - 2, p) % p);
}
ll A(ll n, ll m, ll p)
{
	if (m > n)return 0;
	return (a[n] * ksm(a[n - m], p - 2, p)) % p;
}

2.递推组合数公式:

C ( n , m ) = C ( n − 1 , m ) + C ( n − 1 , m − 1 ) C(n, m) = C(n - 1, m) + C(n - 1, m - 1) C(n,m)=C(n1,m)+C(n1,m1)

我们拿出一个元素,剩下n-1个。要么在 n-1 里面选 m 个,要么这个加上 n-1 里面选 m-1 个

private static final int MX = 31;
private static final int[][] c = new int [MX][MX];

static {
    c[0][0] = c[1][0] = 1;
    for(int i=1;i<MX;i++)
    {
        c[i][0] = 1;
        for(int j=1;j<=i;j++)
        {
            c[i][j] = c[i-1][j] + c[i-1][j-1];
        }
    }
}
// 1 1

// 2 1 , 2 2

// 3 1 , 3 2 , 3 3

// 4 1 , 4 2 , 4 3 , 4 4

3.杨辉三角

上面这个递推结果正是杨辉三角。

// 1

// 1 1

// 1 2 1    

// 1 3 3 1                 C(3,0) C(3,1) C(3,2)

// 1 4 6 4 1               C(4,0) C(4,1) C(4,2)

4.Lucas定理

Lucas 定理用于求解大组合数取模的问题,其中模数必须为素数。正常的组合数运算可以通过递推公式求解(详见 排列组合),但当问题规模很大,而模数是一个不大的质数的时候,就不能简单地通过递推求解来得到答案,需要用到 Lucas 定理。

a是阶乘数组,提前处理好,处理到模数应该够的。

ksm快速幂

C是组合数函数,ksm是用来费马小定理求逆元(即倒数)。就是组合数公式,n的阶乘除以(m的阶乘和n-m的阶乘)。

Lucas 卢卡斯定理 - OI Wiki (oi-wiki.org)

ll a[100005];
ll ksm(int x, int y,int mod) {//因为数据范围很大容易爆掉,所以就要Fast_Pow
	if (x == 1) return 1;
	ll res = 1, base = x;
	while (y) {
		if (y & 1) res = (res * base) % mod;
		base = (base * base) % mod;
		y >>= 1;
	}
	return res;
}
 
ll C(ll n, ll m,ll p) 
{
	if (m > n)return 0;
	return ((a[n] * ksm(a[m], p - 2, p)) % p * ksm(a[n - m], p - 2, p) % p);
}
 
long long Lucas(long long n, long long m, long long p) 
{
    if (m == 0) return 1;
    return (C(n % p, m % p, p) * Lucas(n / p, m / p, p)) % p;
}

17.高精度加法,乘法板子

High precision addition

string hpa(string str1,string str2)
{
    int a[10000] = { 0 }, b[10000] = { 0 }, c[10000] = { 0 };
    int len1 = str1.size(), len2 = str2.size();
    //`len1>=len2
    if (len2 > len1)swap(str1, str2), swap(len1, len2);
    for (int i = 0; i < len1; i++)
        a[i] = str1[len1-1-i] - '0';
    for (int i = 0; i < len2; i++)
        b[i] = str2[len2-1-i] - '0';
    for (int i = 0; i < len1; i++)
    {
        c[i + 1] = (a[i] + b[i] + c[i])/10;
        c[i] = (c[i] + a[i] + b[i]) % 10;
    }
    if (c[len1] != 0)len1++;
    string ret;
    for (int i = len1 - 1; i >= 0; i--)
    {
        ret += '0' + c[i];
    }
    return ret;
}

High precision multiplication

//     999
//     999
//----------
//    8991
//   8991
//  8991
//  123456
string hpm(string str1,string str2)
{
    int a[10000] = { 0 }, b[10000] = { 0 }, c[10000] = { 0 };
    int len1 = str1.size(), len2 = str2.size();
    for (int i = 0; i < len1; i++)
        a[i] = str1[len1 - 1 - i] - '0';
    for (int i = 0; i < len2; i++)
        b[i] = str2[len2 - 1 - i] - '0';
    for (int i = 0; i < len1; i++)
    {
        for (int j = 0; j < len2; j++)
        {
            c[i + j] += a[i] * b[j];//也可以顺便在最后处理
        }
    }
    int len = len1 + len2;
    for (int i = 0; i < len; i++)
    {
        c[i + 1] += c[i] / 10;
        c[i] = c[i] % 10;
    }
    while (c[len - 1] == 0&&len>1/**/)
    {
        len--;
    }
    string ret;
    for (int i = len - 1; i >= 0; i--)
    {
        ret += '0' + c[i];
    }
    return ret;
}

18.排列组合板子 A C

a是阶乘数组,预处理一下

ksm快速幂求的是逆元。用的是费马小定理,适用于模数为素数的时候。

ll ksm(int x, int y, int mod) 
{
	if (x == 1) return 1;
	ll res = 1, base = x;
	while (y) {
		if (y & 1) res = (res * base) % mod;
		base = (base * base) % mod;
		y >>= 1;
	}
	return res;
}
ll C(ll n, ll m, ll p)
{
	if (m > n)return 0;
	return ((a[n] * ksm(a[m], p - 2, p)) % p * ksm(a[n - m], p - 2, p) % p);
}
ll A(ll n, ll m, ll p)
{
	if (m > n)return 0;
	return (a[n] * ksm(a[n - m], p - 2, p)) % p;
}

19.快读快写板子

inline int read()
{
	int x = 0, f = 1;
	char ch = getchar();
	while (ch < '0' || ch>'9')
	{
		if (ch == '-')
			f = -1;
		ch = getchar();
	}
	while (ch >= '0' && ch <= '9')
	{
		x = (x << 1) + (x << 3) + (ch ^ 48);
		ch = getchar();
	}
	return x * f;
}
inline void write(int x)
{
	if (x < 0)
	{
		putchar('-');
		x = -x;
	}
	if (x > 9)
		write(x / 10);
	putchar(x % 10 + '0');
}

20.分解质因数板子

vector<int>divide(int x)
{
	vector<int>ret;
	for (int i = 2; i <= x / i; i++)//i*i <= x 
	{
		if (x % i == 0)
		{
			ret.push_back(i);
			while (x % i == 0)
				x /= i;
		}
	}
	if (x > 1)ret.push_back(x);
	return ret;
}

21.快速选择 数组中的第K个最大元素

class Solution {
    int _k;
public:
    // [0,l][l+1,r-1][r,nums.size()-1]
    int _sort(int left,int right,vector<int>& nums)
    {
        if(left==right)return nums[left];
        int aim = getRandom(left,right,nums);
        int i = left,l = left-1,r = right+1;
        while(i<r)
        {
            if(nums[i]<aim)swap(nums[++l],nums[i++]);
            else if(nums[i] == aim)i++;
            else swap(nums[--r],nums[i]);
        }
        if(nums.size()-1-r+1>=_k)
            return _sort(r,right,nums);
        else if(nums.size()-1-(l+1)+1>=_k)
            return nums[i-1];
        else
            return _sort(left,l,nums);
    }
    int getRandom(int left,int right,vector<int>& nums)
    {
        int r = rand();
        return nums[r%(right-left+1) + left];
                    /*    偏移量   */
    }
    int findKthLargest(vector<int>& nums, int k) 
    {
        srand(time(NULL));
        _k = k;
        return _sort(0,nums.size()-1,nums);
    }
};

22.打表26个质数

int arr[26] = {2,3,5,7,11
    ,13,17,19,23,29
    ,31,37,41,43,47
    ,53,59,61,67,71
    ,73,79,83,89,97,101};

23.多重背包问题

const int MAX = 1e3 + 5;
int v[MAX], w[MAX], s[MAX];
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	int N, V;
	cin >> N >> V;
	for (int i = 1; i <= N; i++)
	{
		cin >> w[i] >> v[i] >> s[i];
	}
	int dp[MAX] = { 0 };
	for (int i = 1; i <= N; i++)
	{
		if (s[i] == -1)
		{
			for (int j = V; j >= w[i]; j--)
			{
				dp[j] = max(dp[j], dp[j - w[i]]+v[i]);
			}
		}
		else if (s[i] == 0)
		{
			for (int j = w[i]; j <= V; j++)
			{
				dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
			}
		}
		else if (s[i] > 0)
		{
			int num = min(s[i], V/w[i]);
			for (int k = 1;num>0; k <<= 1)
			{
				if (num < k)k = num;
				num -= k;
				for (int j = V; j >= w[i] * k; j--)
				{
					dp[j] = max(dp[j], dp[j-w[i]*k]+v[i]*k);
				}
			}
		}
	}
	cout << dp[V];
	return 0;
}

24.分治

归并

class Solution {
    int marr[50005];
public:
    void merge(int left,int right,vector<int>&arr)
    {
        if (left >= right)return;
        int mid = (left + right)>>1;//3 /2  + 5/2
        merge(left, mid,arr);
        merge(mid+1, right,arr);
        int aim = left;
        int part1 = left, part2 = mid + 1;
        while (part1<=mid && part2<=right)
        {
            if (arr[part1] <= arr[part2])
                marr[aim++] = arr[part1++];
            else
                marr[aim++] = arr[part2++];
        }
        while (part1 <= mid)
            marr[aim++] = arr[part1++];
        while (part2 <= right)
            marr[aim++] = arr[part2++];
        //最后再赋回去。。
        for (int i = left; i <= right; i++)
            arr[i] = marr[i];
    }
    vector<int> sortArray(vector<int>& nums) 
    {
        merge(0,nums.size()-1,nums);
        return nums;
    }
};

数组中第k小元素 ; cpp库函数

在这里插入图片描述

class Solution {
    int _k;
public:
    // [0,l][l+1,r-1][r,nums.size()-1]
    int _sort(int left,int right,vector<int>& nums)
    {
        if(left==right)return nums[left];
        int aim = getRandom(left,right,nums);
        int i = left,l = left-1,r = right+1;
        while(i<r)
        {
            if(nums[i]<aim)swap(nums[++l],nums[i++]);
            else if(nums[i] == aim)i++;
            else swap(nums[--r],nums[i]);
        }
        if(nums.size()-1-r+1>=_k)
            return _sort(r,right,nums);
        else if(nums.size()-1-(l+1)+1>=_k)
            return nums[i-1];
        else
            return _sort(left,l,nums);
    }
    int getRandom(int left,int right,vector<int>& nums)
    {
        int r = rand();
        return nums[r%(right-left+1) + left];
                    /*    偏移量   */
    }
    int findKthLargest(vector<int>& nums, int k) 
    {
        srand(time(NULL));
        _k = k;
        return _sort(0,nums.size()-1,nums);
    }
};

作者:昕水
链接:https://leetcode.cn/problems/kth-largest-element-in-an-array/solutions/2807885/cppku-han-shu-shu-zu-zhong-di-kxiao-yuan-1ne4/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

25.判断是素数质数

bool is_prime(int x)
{
	for(int i = 2; i * i <= x; i++)
	{
		if (x % i == 0)return false;
	}
	return true;
}

26.素数筛法

Eratosthenes 筛法(埃拉托斯特尼筛法,简称埃氏筛法)筛至平方根

考虑这样一件事情:对于任意一个大于 1 的正整数 n,那么它的 x 倍就是合数(x > 1)。利用这个结论,我们可以避免很多次不必要的检测。

如果我们从小到大考虑每个数,然后同时把当前这个数的所有(比自己大的)倍数记为合数,那么运行结束的时候没有被标记的数就是素数了。

vector<int> prime;
bool is_prime[N];

void Eratosthenes(int n) {
  is_prime[0] = is_prime[1] = false;
  for (int i = 2; i <= n; ++i) is_prime[i] = true;
  // i * i <= n 说明 i <= sqrt(n)
  for (int i = 2; i * i <= n; ++i) {
    if (is_prime[i])
      for (int j = i * i; j <= n; j += i) is_prime[j] = false;
  }
  for (int i = 2; i <= n; ++i)
    if (is_prime[i]) prime.push_back(i);
}

分块筛选

int count_primes(int n) {
  const int S = 10000;
  vector<int> primes;
  int nsqrt = sqrt(n);
  vector<char> is_prime(nsqrt + 1, true);
  for (int i = 2; i <= nsqrt; i++) {
    if (is_prime[i]) {
      primes.push_back(i);
      for (int j = i * i; j <= nsqrt; j += i) is_prime[j] = false;
    }
  }
  int result = 0;
  vector<char> block(S);
  for (int k = 0; k * S <= n; k++) {
    fill(block.begin(), block.end(), true);
    int start = k * S;
    for (int p : primes) {
      int start_idx = (start + p - 1) / p;
      int j = max(start_idx, p) * p - start;
      for (; j < S; j += p) block[j] = false;
    }
    if (k == 0) block[0] = block[1] = false;
    for (int i = 0; i < S && start + i <= n; i++) {
      if (block[i]) result++;
    }
  }
  return result;
}

线性筛法

也称为 Euler 筛法(欧拉筛法)

vector<int> pri;
bool not_prime[N];

void pre(int n) {
  for (int i = 2; i <= n; ++i) {
    if (!not_prime[i]) {
      pri.push_back(i);
    }
    for (int pri_j : pri) {
      if (i * pri_j > n) break;
      not_prime[i * pri_j] = true;
      if (i % pri_j == 0) {
        // i % pri_j == 0
        // 换言之,i 之前被 pri_j 筛过了
        // 由于 pri 里面质数是从小到大的,所以 i 乘上其他的质数的结果一定会被
        // pri_j 的倍数筛掉,就不需要在这里先筛一次,所以这里直接 break
        // 掉就好了
        break;
      }
    }
  }
}

27.bitset

使用示范:
1.用 <> {} 来初始化
2。test看从右到左第几个位置的值

示例1:

// bitset::operator[]
#include <iostream>       // std::cout
#include <bitset>         // std::bitset

int main ()
{
  std::bitset<4> foo;

  foo[1]=1;             // 0010
  foo[2]=foo[1];        // 0110

  std::cout << "foo: " << foo << '\n';

  return 0;
}

示例2:

class Solution {
public:
    int maxTotalReward(vector<int>& rewardValues) {
        ranges::sort(rewardValues);
        rewardValues.erase(unique(rewardValues.begin(), rewardValues.end()), rewardValues.end());

        bitset<100000> f{1};
        for (int v : rewardValues) {
            int shift = f.size() - v;
            // 左移 shift 再右移 shift,把所有 >= v 的比特位置 0
            // f |= f << shift >> shift << v;
            f |= f << shift >> (shift - v); // 简化上式
        }
        for (int i = rewardValues.back() * 2 - 1; ; i--) {
            if (f.test(i)) {
                return i;
            }
        }
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值