动规之-开心的金明(简单01背包问题)

题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第jj件物品的价格为v[j],重要度为w[j],共选中了kk件物品,编号依次为j1,j2,…,jk,则所求的总和为:
v[j1]×w[j1]+v[j2]×w[j2]+…+v[jk]×w[jk]。
请你帮助金明设计一个满足要求的购物单。

输入格式
第一行,为22个正整数,用一个空格隔开:n m(其中N(<30000)表示总钱数,m(<25)为希望购买物品的个数。)

从第2行到第m+1行,第j行给出了编号为j−1的物品的基本数据,每行有2个非负整数v p(其中v表示该物品的价格(v≤10000),pp表示该物品的重要度(1-51−5)

输出格式
11个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<100000000)。

输入输出样例
输入 #1

1000 5
800 2
400 5
300 5
400 3
200 2

输出 #1

3900

状态转移方程为
f[j] = max(f[j],f[j-w[i]]+v[i])
这是典型的01背包问题
其中f[j]为当背包容量为j时,前1~i件物品的可以装下的最大值
代码如下;

#include <iostream>
using namespace std;
int max(int a,int b)
{
	return a>b?a:b;
}
int f[50000];
int w[30],v[30];

int main()
{
	int n,m;
	cin >>n>>m;
	for(int i = 1; i <=m;i++)
	{
		cin >>w[i]>>v[i];
		v[i]*=w[i];
	}
	for(int i = 1;i <=m;i++)
	{
		for(int j = n;j >= w[i];j--)
		{
			f[j] = max(f[j],f[j-w[i]]+v[i]);//从n开始递减计算
		}
	}
	cout <<f[n];
	return 0;
 } 

事实上,通过如上代码也求出当背包容量不大于n时的最大价值,例如当背包容量为n-1时,f[n-1]即为最大价值;当背包容量为n-200时,f[n-200]即为最大价值
对于可装物品的最大价值,只是因为我们只需要f[n],即只要从n开始递减计算即可

当然,下面是使用01背包算法解决P1060 开心金明问题的代码,并附有详细注释: ```cpp #include <iostream> #include <algorithm> using namespace std; const int MAXN = 33000; // 背包最大容量 int dp[MAXN]; // 动态规划数组,dp[i]表示容量为i时的最大价值 int main() { int n, m; // n表示物品个数,m表示背包容量 cin >> m >> n; for (int i = 0; i < n; i++) { int v, p; // v表示物品的体积,p表示物品的价值 cin >> v >> p; for (int j = m; j >= v; j--) { // 从后往前遍历背包容量,保证之前计算的dp[j-v]没有被覆盖 dp[j] = max(dp[j], dp[j - v] + v * p); // 更新当前容量下的最大价值 } } cout << dp[m] << endl; // 输出背包容量为m时的最大价值 return 0; } ``` 代码解释: 1. 首先,我们定义了常量MAXN表示背包的最大容量,并声明了一个长度为MAXN的dp数组,dp[i]表示容量为i时的最大价值。 2. 接下来,从输入中读取背包容量m和物品个数n。 3. 然后,使用一个循环遍历每个物品。在每次循环中,我们读取当前物品的体积v和价值p。 4. 接着,使用一个逆序的循环遍历背包容量j,从m到v。这样做是为了保证之前计算的dp[j-v]没有被覆盖。 5. 在内层循环中,我们更新dp[j]的值,将其更新为dp[j]和dp[j-v] + v * p的较大值。其中,dp[j]表示不选当前物品时的最大价值,dp[j-v] + v * p表示选择当前物品时的最大价值。 6. 最后,输出dp[m],即背包容量为m时的最大价值。 希望这个解释对你有帮助!如果还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值